

The role of sustainable (aviation) fuels in the energy transition

Dr. Shiju Raveendran Group leader-Catalysis Engineering Group Van't Hoff Institute for Molecular Sciences University of Amsterdam Visiting Professor, IIT Roorkee, Yangzhou University, China

Aviation Industry

- 57 million jobs
- USD 2.2 trillion in global GDP.

UNIVERSITY OF AMSTERDAM

- 2035: 7.2 billion passengers through the world's major airports
- twice the number of passengers in 2016
- > 3 billion tons of GHG emissions by 2050
- 4 times greater than the 2015 baseline (0.78 billion tons).

Air Transport Action Group (ATAG) 3

Ř

Contribution to achieving Net Zero Carbon in 2050 **19**% 500 449 STATE. 10.1 400 346 3% Billion litres 300 229 13% 200 65% 90 100 23 Ō Sustainable aviation fuel New technologies 2025 2030 2035 2040 2045 2050 Infrastructure/operations Offsetting/carbon capture

Expected SAF required for Net Zero 2050

	2025	2030	2035	2040	2045	2050
Regional & short haul < 1,500 km c.20% of industry CO ₂	SAF	SAF	Electric or Hydrogen combustion and/or SAF	Electric or Hydrogen combustion and/or SAF	Electric or Hydrogen combustion and/or SAF	Electric or Hydrogen combustion and/or SAF
Medium haul 1,500-4,000 km c.30% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF potentially some hydrogen
Long haul > 4,000 km c.50% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF

Available options

Bi	ogenic SAF	
	HEFA Hydroprocessed esters and fatty acids	Input • plant oils, algae (bio oils) • recycled fats, animal fats (tallow)
	AtJ (Alcohol to jet fuel) Biomass to liquid (biochemical conversion: fermentation). Biomass - gas to liquid (thermochemical conversion: gasification)	Input • sugars from crops • agricultural and forestry residues • cellulose
	Gas + FT (Gasification + Fischer Tropsch) Fisher Tropsch-process using biomass	Input • forestry residues • agri waste • household waste (MSW)
Sy	nthetic SAF	
	E-fuels/Power to jet Fischer Tropsch-process	Input • green hydrogen • carbon

Unsubsidised cost of kerosene and synthetic fuel in euro cents per seat per kilometre

Source: ING Research

University of Amsterdam

Sustainable jet fuel from Organic waste

Carbon lifecycle diagram: fossil fuels

Carbon lifecycle diagram: Sustainable aviation fuel

- Uncertain costs of green hydrogen and synthetic kerosene by 2050.
- Uncertain factor: oil price in a net-zero economy.
- Polluting jet fuel is very cheap and green alternatives are expensive.
- Room for policymakers to intervene by taxing dirty technology or subsidising clean technologies.
- Without such policies, the use of synthetic fuel is unlikely to take off in aviation making it

impossible for the sector to reach net zero by 2050.

But the technologies need to be ready....

SAF may not fly without policy support...

JNIVERSITY OF AMSTERDAM Renewable jet fuel from Organic waste

Van 't Hoff Institute for Molecular Sciences

Home About HIMS Research Valorisation Education News Events Staff Vacancies Con

Dr Shiju Raveendran. Photo: HIMS.

Booking.com supports research into renewable jet fuel from waste

18 December 2018

Dr Shiju Raveendran of the University of Amsterdam's research priority area Sustainable Chemistry has acquired a 150,000 euro grant from Booking.com. He conducts research into the manufacture of renewable jet fuel from food waste and other organic residue.

Dr Raveendran is working on a catalytic process for converting organic waste into sustainable jet fuels. His team has performed preliminary studies on converting waste cellulose to bio-oil in a batch reactor. He will use the funding from Booking.com to extend his research to more types of organic waste and to scale up the experiments. In addition, the project involves the development of a strategy to make consumers aware of waste flows, of emissions from aircraft and of the importance of cleaner fuels and a circular economy. In this part circular economy consultant Sarah Wilkin is involved.

"We are very pleased that the Booking Cares Fund supports our project" says Dr Raveendran, who is associate professor with the Heterogeneous Catalysis and

Hydrothermal Liquefaction

- J. Mors, N. R Shiju, The synthesis of biooil using ambient pressure liquefaction of organic waste, Sustainable Chemistry for Climate Action, 100013, 2023.
- S Shirazimoghaddam, I Amin, JA Faria Albanese, N R Shiju, Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts, ACS Eng. Au, 3, 1, 37–44, 2023.

UNIVERSITY OF AMSTERDAM

Hydrothermal Liquefaction

Catalytic Waste Feed HTL upgrading collection processing Handles any organic waste -Feed –flexible Recovery of Carbs, Proteins Technology (food waste, food **Energy efficient**: Uses processing waste, water in waste as a reactant Agro waste, Renewable fuel and recovers mineral-rich manure, industrial water. No need of drying waste, mixed nonwet waste

Drop-in renewable crude as product:

Energy-dense liquid crude, compatible with petroleum crude. Can be processed in existing refining infrastructure. No change required in engine technology.

Fast process –minutes to hours

recyclable plastics)

Liquefaction Technology

A. K. Panda, A. Alotaibi, I. V. Kozhevnikov, N. R. Shiju, Pyrolysis of Plastics to Liquid Fuel Using Sulphated Zirconium Hydroxide Catalyst, *Waste and Biomass Valorization*, 11, 6337–6345, **2020**.
Hydrothermal Liquefaction of Plastics: a survey of the effect of reaction conditions on the reaction efficiency.

Matthijs Justin Boel and N. Raveendran Shiju, *Reaction Chemistry and Engineering*, under review.

Liquefaction for chemical recycling of plastics

PLASTICE

https://plastice.eu/

Grant Agreement N° 101058540

European Commission Horizon Europe Overall: 20 million Euros

UvA: Lab scale studies, Process technology (basic and detailed engineering)

Ř

Reactors

Extrusion (first step)

Mix feedstock with water Pump with a flow rate of 6 ml/min Continuous Flow Reactor 620 °C and 220 bar

AI/ML to help liquefaction

18

eXtreme Gradient Boosting (XGBoost) algorithm

Mean absolute error (MAE) value of 9.1

Plastics recycling by HTL

ŵ

- By optimizing conditions, high oil yields were obtained.
- Depending on the feedstocks, the composition can slightly vary.
- Oil, gas and char fractions depend on the feedstock, reaction conditions and additives.

No		Retention
INO.	Peak Name	Time
		min
1	hexane	2,336
2	Cyclopentane, 1,2-dimethyl-, cis-	2,414
3	Heptane	2,461
4	Cyclohexane, methyl-	2,606
5	Cyclobutene, 2-propenylidene-	3,084
6	Cyclopentane, 1-ethyl-3-methyl-, cis-	4,251
7	Octane	4,850
8	Benzene, 1,3-dimethyl-	5,050
9	Cyclohexene, 1,6-dimethyl-	6,495
10		6,577
11	p-Xylene	6,863
12		6,918
13	heptane	7,004
14		8,367
15	Decane	8,446
16	undecane	8,477
17	Dodecane	9,617
10	Cyclopentane, 1-methyl-2-(4-	
10	methylpentyl)-, trans-	9,715
19	Dodecane	10,725
20	1-Tridecene	10,811
21	Pentadecane	11,739
22	10-Heneicosene (c,t)	11,814
23	Tetradecane	12,683
	3.5e8 3 20230202_MCT_DEE_olie_1op50_PROD1@3 #1	
	3.0e8 - 20 - 10.811	
	2.5e8	
3	2.0e8	
the Press of	1.508	
e ver per	1,0e8 18-5.050 17 9.627 12 683 17 9.627 1 127893 23 683 04 2 42 - 19.592	
	5.067 - 6.623 - 8.367 - 2.32 4 923 - 7.3 +4 - 22.021	783
	0.000 HURIESSING PUBLIC STANDARD HURIESSING	46 - 26.071
	-5.0e7	
	13 50 100 150 200 250	30.0

Time [min]

Retention No. Peak Name Time min 24 E-2-Hexadecacen-1-ol 12,750 25 Pentadecane 13,565 Acetic acid, chloro-, hexadecyl 26 13,627 ester 14,399 27 Hexadecane 28 cis-13-Eicosenoic acid 14,454 29 1-Hexadecanol, 2-methyl-14,489 Tetradecane, 2,6,10-trimethyl-30 15,190 cis-Vaccenic acid 31 15,237 32 1-Hexadecanol, 2-methyl-15,284 Tetradecane, 2,6,10-trimethyl-15,942 33 34 ocdecane 15,985 35 nonadecane 16,655 Octadecanal, 2-bromo-36 16,694 37 17-Pentatriacontene 16,733 38 17,336 Eicosene 39 Eicosane 17,371 40 18,022 uncosane 18,731 41 docosane 42 tricosane 19,592 20,666 43 tetracosane 22,021 44 pentacosane 45 hexacosane 23,783

M

Compositio	on of oil a	nd gas	Gas	CH PRIORITY AREA SIZ
		Component	detector	101% J
		Hydrogen	TCD	4,57
		Argon	TCD	28,15
		СО	TCD	0,31
		CO ₂	TCD	2,04
	Retention	Methane	TCD	15,20
Name	Time	Methane	FID	15,30
exadecacen-1-ol	12,750	Ethane/ethylene	FID	23,33
decane acid. chloro hexadecvl	13,565	n-C3	FID	11.63
	13,627	Pronvlene	FID	2 32
lecane -Ficosenoic acid	14,399	Acotylono		0.74
adecanol. 2-methyl-	14.489	Acetylene		0,74
lecane, 2,6,10-trimethyl-	15,190	Iso-Butane	FID	2,17
ccenic acid	15,237	n-Butane	FID	0,00
adecanol, 2-methyl-	15,284	trans-2-Butene	FID	,
ane	15,942	trans-z-butene		0,55
lecane	16,655	iso-Butylene	FID	0,19
ecanal, 2-bromo-	16,694	cis-2-Butene	FID	0.15
ntatriacontene	16,733			0,10
ene	17,336	iso-Pentane	FID	0,11
ane	17,371	n-Pentane	FID	0 37
ane	18,022			0,57
ane	18,731	total		91,81
ane	19.592			

Mainly safe products. Small amounts of CO, CO₂

Oil from HDPE

Mono aromatics contain										
	877078	883548	886549							
Benzène	0,10	0	0,12							
Toluène	0,60	0.04	0.76							
m/p-Xylène	0,16	0.17	0,68							
o-Xylène	0,10	0.09	0,33							
Styrène	0	0	0.02							
Para Cymène	0	0.01	0,03							
C10H14	0	0.36	2 23							
TOTAL	1,11	0.00	2.20							

	877078	883548	886549
FAMILY	% m/m	% m/m	% m/m
Normal and iso-paraffins	27.01	35.52	33.75
Olefins	21,55	32.22	27.80
Mono naphthènes	12,6	16.37	15.58
Poly naphthènes	14,34	8.64	7.94
Mono aromatics	8,06	6.95	12.45
NMA	3,50	-	-
Di aromatics	1,05	0.30	2.25
Tri aromatics	0,0	0.0	0.08
Tetra aromatics +	0,0	0.0	0.11
Non identified	0,01		0.03
Other < C9	11.70		
TOTAL	99.81		99.80

University of Amsterdam

Simulated Distillation

Analysis for inorganic species

Oil

K, Ca, Cr, Fe, Ni, Cu, Zn, Ag, Cd, Co S, Cl

Water	
Cr, Fe, Ni	
S CI	

Char

K, Ca, Cr, Fe, Ni, Cu, Zn, Ag, Cd, Co S, Cl Si, P, Ti, V, Mn, As, Rb, Sr, Zr, Mo, Rh, Sn, Ba, Pb

										pe -					

Model 2

Model: T = 448C

UnPlexpl

Cillero

Gas exp

UnP model

Of Model

Gas model

reaction time (min)

Yield (%) \$ 23 28

Ř

100 4

Yield (%)

UNIVERSITY OF AMSTERDAM Modeling using kinetic parameters from model 2

UNIVERSITY OF AMSTERDAM Modeling using kinetic parameters from model 2

Yield of products-experimental vs simulation

Process parameters used: inlet temperature: 300 K; residence time: 1 min; reaction temperature: 673 K, Pressure = 180 bar.

- 2-dimensional, lumped kinetic model and a single phase fluid flow •
- Reaction kinetics for HTL is not easy ٠

										pe -					

Ê

× × ×

Batch reactor design

Technical pa	arameters
Work pressure, MPa	30
Work temperature, °C	500
Design pressure, MPa	35
Design temperature, °C	550
Material	SS304 with SS316 liner
Working volume, m ³	
Heat exchange area	
Bursting disc open pressure, MPa	35
Mixing type	Paddle
Motor power, KW	
Mixing speed, r/min	0-500
Corrosion allowance, mm	

Ř

 $\langle \rangle \rangle$

Top view

RESEARCY

Intermediate Scale-up-same performance?

