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Advanced Ruin Theory: generalities

o Scope-wise very close to earlier course Queues and Lévy Fluctuation
Theory.

o Will be using lecture notes The Cramér-Lundberg model and its
variants — a queueing perspective by M. Mandjes and O. Boxma.

o You have been sent draft of the book. Any comments are welcome,
preferably by email. Publication in a few months.

o Twelve classes, roughly one per chapter.
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Advanced Ruin Theory: practicalities

o Three homework sets. (Not in pairs.)

(@]

Late May or in June: oral exam.

o

Final grade average of the two individual grades.

O

I'll use Datanose for sending out messages.
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Advanced Ruin Theory: scope

o Risk process: models reserve level of insurance firm.
o Interested in probability of hitting 0: bankruptcy of insurance firm.

o Basic variant is Cramér-Lundberg model, but many (sophisticated)
variants possible.

o Although we tell the story along the lines of risk theory, the material
has a substantially broader applicability: extreme values of
stochastic processes.

o Direct connection with queueing theory.

o In earlier course Queues and Lévy Fluctuation Theory we considered
slightly broader class of processes, but derived slightly less explicit
results.
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CHAPTER |: CRAMER-LUNDBERG MODEL
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Base model: Cramér-Lundberg

Setting considered:

o In CL model, clients of insurance firm generate independent and
identically distributed (i.i.d.) claims, which arrive according to a
Poisson process.

o Insurance firm receives premiums at constant rate.

o Key object: ruin probability, i.e., probability that for a given initial
reserve, reserve level drops below zero.

o Two flavors: all-time ruin probability (ruin over an infinite time
horizon) and time-dependent ruin probability (ruin before a given
time).
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Base model: Cramér-Lundberg

Duality with queueing:
o We often work with net cumulative claim process: cumulative
amount of claimed money, decreased by the premiums earned.
o Insurance firm is ruined when net cumulative claim process exceeds
the initial reserve.

o Consequence: ruin can be written in terms of the running maximum
process (corresponding to net cumulative claim process) exceeding a
given threshold (i.e., the initial reserve).

o Duality relation between event of ruin in CL model, and event of a
workload threshold being exceeded in related M/G/1 queueing
model.
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Model description
o Claims arrive according to Poisson process with rate A > 0. N(t),
number of claims in [0, t], is Poisson with mean At.

o Claims form sequence of i.i.d. random variables By, Bo, . . .,
distributed as generic non-negative random variable B with
Laplace-Stieltjes transform (LST) given by

b(a) :=Ee 8 = f e “'P(B e dt).
[0,00)

o Clients generate premiums at constant rate r > 0.
o Initial reserve level is u > 0.

Until ruin, reserve level is given by (empty sum being defined as 0)

N(t)
Xu(t) = u+rt— Z B;.
i=1
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Ruin probabilities

First objective: all-time ruin probability, for initial reserve level u, i.e.,
probability of X,(t) ever dropping below 0:

p(u) :=P(3s > 0: X,(s) <0).

Second objective: time-dependent ruin probability, for initial reserve level
u, i.e., probability of X, (t) dropping below 0 before t:

p(u,t) :=P3s e [0,t] : Xu(s) <0).
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Net-profit condition

o All-time ruin probability p(u) is trivially 1 if net-profit condition
AEB < r is violated.

o Observe: AEB is expected claimed amount per time unit, while r is
the insurer’s income per time unit.

o Time-dependent ruin probability p(u, t) is worth studying regardless
of whether or not net-profit condition holds.
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Working with transforms

O

Only in exceptional cases p(u) and p(u, t) allow explicit expression.

@]

Remedy: work with transforms, i.e.,

o

Time-dependent ruin: exponentially distributed time horizon
(‘killing’). Concretely, with Tg exponentially distributed time with
mean 37!, consider transform of p(-, Tg). Thus, focus on double
transform

7(a, B) = J e “p(u, Tg) du = L L B e =Ptp(u, t) du dt.

0

@]

Abelian theorem: 7(a) = limgjo 7(c, 8). Hence: it suffices to focus
on evaluating w(«, 3) only.
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Transform of running maximum

Define the ‘net cumulative claim process’ and corresponding running
maximum process:

N(t)
Y(t) := Z Bi—rt, Y(t):= sup Y(s).
i=1 SE[O,f]

Y (t): compound Poisson process with drift.

Clearly, _ B
p(u) = P(V(0) > u),  plu,t) = B(V(e) > u).

Conclude: probabilities p(u) and p(u, t) are complementary cumulative
distribution functions of random variables Y'(o0) and Y(t), respectively.
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Transform of running maximum, ctd.

Consider
0

o(a,B) :=Ee V(o) = J e P(Y(Tp) € du).
0

Integration by parts:

ot = [ " e dB(V(T,) > )

o0
— e P(V(Ty) > )| — af e P(Y(T5) > u) du
_ 0
. =0
=1-— af e “p(u, Tg)du=1—an(a,B).

0

Hence: when aiming at computing 7(«, 8), we can equivalently compute
o(a, B): these two double transforms uniquely define one another.
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Duality with M/G/1 queue

o M/G/1 queue: reservoir at which i.i.d. jobs (distributed as a random
variable B) arrive according to a Poisson process with rate A > 0,
drained at rate r > 0.

o Q(t): workload in this system. Can be seen as net input process
Y (t) truncated at zero (thus preventing storage level from becoming
negative). Assume Q(0) = 0.
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Duality with M/G/1 queue, ctd.

Define the running minimum process by

= inf Y(s).
Y(t) L (s)

Y(t) Q(1)

AN ,\ I\
N \'\I t t
Figure: Net cumulative claim process Y (t) (left panel) and workload process

Q(t) (right panel) for compound Poisson process. In left panel, corresponding
running minimum process Y (t) is depicted by dotted lines.
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Duality with M/G/1 queue, ctd.

From figure:

In addition, relying on time-reversibility argument,

V(0= Y00 = V() = nf Y(9)= sup (Y(6) = V()

sup Y (s) = Y(t),

with ‘2’ denoting equality in distribution.

Conclude: Y(t) has same distribution as Q(t) (‘duality’).
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Four methods to compute transform

o Method 1: use ruin model. Idea: condition on first event (either a
claim arrival or having reached the time horizon).

o Method 2: use both ruin and queueing model. Idea: write running
maximum as the sum of a geometric number of i.i.d. random
quantities (‘ladder heights’).

o Method 3: use queueing model. Idea: rely on Kella-Whitt
martingale and optional sampling machinery.

o Method 4: use queueing model. Idea: set up system of differential
equations for the transform under study, and solve these.
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Method 1: condition on first event

Roadmap:
o Evaluate 7(«, ) by conditioning on first event, which is either a
claim arrival or killing.
o Obtain an expression in terms of the transform of interest 7(c, §).

o Solve 7(a, 8) from the resulting equation (also requiring
identification of an unknown constant).
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Method 1: condition on first event, ctd.

Recall: T is exponentially distributed with mean 371. Hence,

plu Ta) = 555 (e To) + pala i),

where, distinguishing between scenario that there is ruin due to first
claim and scenario that multiple claims are needed,

p1(u, Tg) := fo(wrﬁ)e—(“ﬂ)s fo P(B € dv) ds,

0 u+rs
00 u-+rs

pa(u, Tg) := J A+ ,B)e*(’”ﬁ)sf p(u+rs—v, Tg)P(Bedv)ds;
0 0

in latter expression, memoryless property of exponential distribution has
been used.
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Method 1: condition on first event, ctd.

We can thus write 7(«, 8) = m1(«, 8) + m2(a, 8), with

00] 0 Q0
mi(a, B) ::f e—a”f Ae—WB)SJ P(B € dv) ds du,

0 0 u+trs
0 0

S R T
0 0

u+rs
f p(u+rs—v,Tg)P(B € dv)dsdu.

Next step: evaluate these by swapping order of integrals (and a change of
variable).
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Method 1: condition on first event, ctd.

Interchanging the order of the integrals,

0 v (v—u)/r
m(a, ) = /\J;) (L e (L e~ (A +h)s ds) du) P(B € dv).

Then inner integrals can be evaluated:

o0 _ a—av —(M+B)v/r _ p—av
A f lze™ ¢ ¢ \P(Bedv).
A+ 8 Jo e a—(A+8)/r
This quantity can be interpreted in terms of the LST of B evaluated in
specific values: with s(8) := (A + )/r,

_ A (1 —b(a)  b(s(B)) — b(a)>
A+ 7 a a—s(B) .

’]T]_(Cl, B)
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Method 1: condition on first event, ctd.

Performing change of variable w := u + rs, m(«, ) equals
1 0 a0 w
ff e—a“f Ae 5B w=u) f p(w — v, T3)P(B € dv) dw du.
rJo u 0

Swap order of integrals:

A 0 o0 w
—J (J e p(w — v, Tp) q e~ We—s(B)(w—u) du> dw> P(B € dv)
rJo

v 0

-l (

But

Jw (e — =) p(w — v, Tp) dw> P(B € dv).

v

0

0
J e p(w—v, Tg)dw = e’o“’f e p(w, Tg) dw = e~ *7(a, B),
v 0

(and likewise for s(8) instead of «), so that
A1

ma(a, B) = 75(ﬁ)7—a

(b(e)m (e, B) — b(s(B))m(s(B). B))-
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Method 1: condition on first event, ctd.

o Add up expressions for 71 (v, 8) and w2 (a, B).
o Observe that mp(a, 8) contains a term involving (e, ).
o Solve for 7(a, B).

Result:

_, A s(B) — « 1—b(a)
A+ Br(s(B) —a)—Abla) «
LA bl@)—b(s(B)  Ab(s(B)) 7(s(5),5)

A+ Br(s(B) —a) —Ab(a)  r(s(B) —a) — Ab(a)’

Observe that right-hand side contains unknown quantity 7(s(3), ).

m(a, B)
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Method 1: condition on first event, ctd.

Constant 7(s(f), 3) can be identified by using that a root of the
denominator is also a root of the numerator.

Elementary: equation r(s(8) — «) — Ab(a) = 0 has for any 5 >0 a
unique positive root, say ¥(3).

Leads to:
o (s(B) = (B)1-b(B)  b((B)) — b(s(B))
m(s(8),8) = Aw( b)) D) b(s(7)) )
o (sw)(l b)) — (B)(1 — b(S(ﬂ))))
e b(s(5)) 4 (5) |
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Method 1: condition on first event, ctd.

Now define Laplace exponent
o) :=logEe™*Y® = ro — \(1 — b(e)).

Function v (-), as defined above, is inverse of Laplace exponent ¢(-)
(Check!) — in case ¢'(0) < 0 actually right inverse.

Plugging in expression for 7(s(3), 3) into m(«, 8), after some calculus,

A 1—-5b 1 - bl
”(‘“’@:w(a)—ﬁ( wf;f)(m)‘ - )>
1 fela)—ra B-ri()
w(a)—5< a ) )
_ 1 pla) B
_w(a)—ﬁ<a ww))

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Method 1: condition on first event, ctd.

[e% (a)
A ()
»(B)
— a, B a, B

Figure: Functions op(a) and (3) with ¢’(0) > 0 (left panel) and with
©'(0) < 0 (right panel). In former case 1/(0) = 0, whereas in latter case
$(0) > 0.
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Method 1: condition on first event, ctd.

Now use result to derive expression for transform of Y (Tjs), by
translating o(«, ) in terms of 7(«, 3).

Theorem (Time-dependent Pollaczek-Khinchine)

For any > 0 and 8 > 0,

Exercise 1.1: procedure that uses this theorem to recursively evaluate all
moments of running maximum Y'(Tg).
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Method 1: condition on first event, ctd.

Transform of Y (o0) found by letting 3 | 0. B
Net-profit condition needed, to make sure that Y (o0) is finite.

Corollary (Pollaczek-Khinchine)

For any a = 0, under the net-profit condition,

o(a) == Ee=2¥® = g(a,0) = 22O
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Method 1: condition on first event, ctd.

‘Pollaczek-Khinchine' can be alternatively written as

__a(r—AEB) (. AEB ~Al—b(e)
o) = ra— X1 — b(«)) (1 r > /(1 r o« ) '
Observe: (1 — b(«))/(aEB) is transform of random variable B with

density f5(t) :=P(B > t)/EB:

5 @ P(B = u) 1—b(a)
E —aB _ —au _ .
y L € 5B " LEB

This implies |(1 — b(«))/(¢EB)| < 1 for & > 0, so that we can write

o(0) = ( AEB) Z <)\EB) (1;151(;))”.
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Method 1: condition on first event, ctd.

Define c:=1—AEB/re (0,1), and let G be geometrically distributed
with success probability c:

P(G=n)=(1-¢c)".
In addition, let B*' be a random variable defined as the sum of i i.i.d.

copies of B. Then we find the following representation.

Proposition (Geometric sum representation)

The following distributional equality applies: under the net-profit
condition, an empty sum being defined as zero,

B < BS.
1

¥ (o0) £

G
i=
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Method 1: condition on first event, ctd.

Lemma
For any B >0, —Y(Tg) is exponentially distributed with mean 1/ ().

Proof. Process K(t) := e=#(®)t e=@Y(t) is 3 mean-1 martingale. Define
o(v) as first time Y(t) crosses level —v, for some given v > 0.
Observe that Y(o(v)) = —v (Why?), so that by ‘optional sampling’

1=EK(0) =EK(c(v)) =E (e ?¥"M1{o(v) < x0}) - ™.
Plug in a = 4(B):
E (e ?*M1{o(v) < 0}) = e ¥V,
Stated follows from {—Y(Ts) = v} = {o(v) < T3} and Remark 1.3

P(-Y(Tg) = v)=P(o(v) < Tg) =E (e_B”(V)l{U(v) <oo}) = e VBV,
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Method 1: condition on first event, ctd.
o Note that

EeY(Ts) — foo Be Pter(@tgr — L
0 B —¢(a)

o Time-reversal: Y(T5) — Y(T3) A —Y(Ts). Due to Lemma,

Y(Tg) — Y(Tp) is exponentially distributed with mean 1/4(3). So

B e—o(V(Ta)-v(Ty)) _ _¥B)

o By ‘Time-dependent Pollaczek-Khinchine' and above results,

Ee—aV(Ts) oY (Ta)=¥(Tp)) _ &= Y(B) B Y(B)

pla) =BY(B) ¢(B)—«a
__ B peav(T
B —¢(a) " '
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Method 1: condition on first event, ctd.

As (evidently)
Y (Ts) = Y(Ts) + (Y(Tp) = Y(Tp)),

above observations lead to the following result.

Proposition (Wiener-Hopf decomposition)

The random variables Y (T3) and Y (Ts) — Y (Tg) are independent.

The former has a Laplace-Stieltjes transform that is given by the
time-dependent Pollaczek-Khinchine theorem, whereas the latter has the
same distribution as —Y (Tg), i.e., is exponentially distributed with mean

1/4(8).
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Method 2: ladder heights

Roadmap:

o Y(Tjp) is distributed as sum of geometric number of i.i.d. copies of a
ladder height H.

o Determine transform of H (also using some queueing-theoretic
arguments).

o Determine o(a, 3).
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Method 2: ladder heights, ctd.

Define 7o = 0, and for i = 1,2,.. .,

i—1 i—1
T;:—inf{t>0:Y<t+ZTj>—Y Z7’j>>0},
j=1 j=1
i i—1
H;, =Y 27]-)*\/(1273).
=1 =1

o H;: difference between the process’ i-th and (i — 1)-st record value;

o 7j: time elapsed between epochs at which these two record values
are attained.

(H;, 7i)ien is sequence of i.i.d. random vectors; let (H, 7) be
corresponding generic random vector.
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Method 2: ladder heights, ctd.

Busy period: uninterrupted interval in which associated queueing process
is positive; are i.i.d., say distributed as generic random variable o.

Observation: with B sampled independently of process Y (t), busy period
o is distributed as first time Y(t) crosses (stochastic) level —B.
Note: o can be defective if net-profit condition is not fulfilled.
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Method 2: ladder heights, ctd.

With o(x) as defined before,
o)
E (e 1{oc < 0}) = f E (e777™ 1{g(x) < o0}) P(B € dx)
0

:fe VX P(B e dx) = b1H(B)).

Using definition of ¢(+), we find 5 = o(¥(B)) = rip(8) — A(1 — b(¥(B))).

For any 5 > 0,
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Method 2: ladder heights, ctd.

Define

= E(e= YT 1{Y(Ts) = Y(Tp)})
= E(e X9 1{Y(T5) = ¥(Tp)}).

For any a > 0 and > 0,

§(a, B)

B

£(a, B) = 0B —ra
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Method 2: ladder heights, ctd.

Proof. L(t) := —Y(t)/r is the associated queue's idle time in [0, t]
(Check!). Hence, consider

E(a, B) = E(e"HT 1{Q(T5) = 0}).

Conditioning on the first event (killing time or start of a busy period), by
exploiting the underlying regenerative structure,

p N A
A—ra+p A—ra+p

&, B) = Plo < Tp)&(e, ).

Recalling that P(o < Tj) can be rewritten as E (e %7 1{o < o0})
(Remark 1.3), and using Lemma,

B -~ B
Ml—EeB)—ra+p ryY(B)—ra

g(avﬁ) =
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Method 2: ladder heights, ctd.

Next objective: compute

n(a,B) :=E (e *" P 1{r < w0}).

For any o > 0 and 8 > 0,
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Method 2: ladder heights, ctd.

Proof. Use decomposition

where

(e_aY(TB) 7> Tg, 7 < w}),
(e=>YT2) 1{r < Ty, 7 < 0}).
Recalling definition of &(a, §),

m(a, B) = E(e=Y(T0) 1{Y(T;) = 0})
=E(e YT 1{Y(T5) — Y(T5) = 0}) = (e, B),

which is known from previous Proposition.
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Method 2: ladder heights, ctd.

0 t 0
n2(a, B) = f 56_Btj J e WE(e OV | H =y 1 =5)
t=0 s=0Jy=0

P(H € dy, T € ds) dt

o] t o]
= f 5e—BfJ J e~ e =) P(H e dy, T € ds) dt.
t=0 s=0 Jy=0

Swap order of integrals:
0 0 o0
J f (J Be‘ﬁteW(o‘)tdt) e~ e ?(MSP(H e dy, T € ds)
s=0Jy=0 t=s

ﬁ 0 Q0 s
=—— e" Ve P P(Hedy,T € ds)
B—o(a) L:o JyO

= ﬂ—i(a)n(a’ﬁ)'

Combining the above, stated follows after some algebra.
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Method 2: ladder heights, ctd.

Using geometric-sum representation, we can now compute transform of
running maximum Y (Tg). We thus recover time-dependent
Pollaczek-Khinchine theorem:

oo, B) = Y (n(er. )" (1 = n(0,))
k=0
S, B-pl) \ B
- X (1 ro(5) - ra) ro(3)
_a—y(8) B
o(c) — B4 (B)
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Method 3: Kella-Whitt martingale

Roadmap:
o Use queueing representation.
o Consider Kella-Whitt martingale involving the queueing process.

o By ‘optional sampling’ expression for o(«, ) is found.
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Method 3: Kella-Whitt martingale, ctd.

Define

Lemma

The process M(t) is a martingale with respect to .7 (t), i.e., the natural
filtration pertaining to {Y(s) : s € [0, t]}.

Proof in e.g. Kyprianou book; informal support in Section 1.5.
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Method 3: Kella-Whitt martingale, ctd.

Using ‘optional sampling’ with the stopping time T3 and recalling that
Q(0) = 0, we have that 0 = E M(0) = E M(Tp).

Hence,

Ts
0= (p(a)Ef e @) gs 41 —Ee T8) L o EY(Tp).
0
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Method 3: Kella-Whitt martingale, ctd.

Swapping the order of integration,

Tg Q0 t
]EJ e Q0) ¢s = f ﬁe*ﬁtj Ee Q0 ds dt
0 0 0

o8] 0
- f (f ﬁe—ﬁfdt>Ee—aQ<5> ds
0 s

o]
= J- e PSE e Q) gs

0
1
= ZEeQTs),
B
Solving E e=*Q(Ts),
Ee QT8 — ( b (—aEY(Ts) —1).
pla) —
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Method 3: Kella-Whitt martingale, ctd.

Left: find EY(T3). Note that (fixing 8 > 0) any root o > 0 of
denominator should be root of humerator as well.

Hence, using that o = t(3) is root of denominator,
—¢(B)EY(Ts) =1,
so that EY(Tg) = —1/4(5).

From the above we conclude that, in agreement with time-dependent
Pollaczek-Khinchine theorem,

—aQ(Tp) _ ﬁi
fe @)~ BB
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Method 4: Kolmogorov forward equations

Roadmap:

o Use queueing representation. Express E e~ *Q(t+A1) in terms of
E e—Q(),

o Set up a differential equation, and transform it with respect to time.

o Solve the resulting identity, to obtain o(«, 3).
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Method 4: Kolmogorov forward equations, ctd.

Define F;(y) as probability that Q(t) does not exceed y, where
Q(0) =0, and let f;(y) denote corresponding density.

Elementary At-argument gives, up to o(At)-terms,
Feene(y) = Fe(y + r At)(1 — A At)

+ AAt <J‘Y (zZ)P(B<y—2z)dz+ F(0)P(B < y)) .
0+

Subtracting F;(y + r At), dividing by At and letting At | 0:

0

aFt(y) = rfi(y) — AFe(y)

+ A(Li ft(z)]P’(B<y—z)dz+Ft(O)}P’(B<y)>.
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Method 4: Kolmogorov forward equations, ctd.
Same can be done for LST of Q(t). With

Ri(a) = B0, Fy(a) i= Ee*01{Q(t) > 0} = re(a) — g,
where g; := P(Q(t) = 0) = F;(0) and 1{A} indicator of event A,

Rerne(@) + Gerar = Keyae(@)
= Re(@) (1 = AAt + AAt b(a) + ralt) + g (1 — AAt + AAt b(a))
= Re(a) (1 + @(a)At) + (1 — AAt + AAt b(a)) qe.

Lemma

For any a, t > 0,

Efit(a) + %qt = p(a) Re(a) — e A (1 — b(e)).

Advanced Ruin Theory
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Method 4: Kolmogorov forward equations, ctd.

Consider differential equation of Lemma, but now at exponentially
distributed time Tp.

Standard identity
Jm Be Pt <af(t)> dt = —pf(0) + ﬁfoo Be Pf(t) dt
0 ot 0 ’
Hence,
~orofa) + 8 [ se P mia)dt— fao+ 8 [ pe g a
0 0

~pla) [ e Pria)de =2 (1- bla) [ pe Pt
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Method 4: Kolmogorov forward equations, ctd.

Due to Q(0) = 0, we have Ro(«) = 0 and go = 1. Rearranging, and
using definition of ¢(a),

(B —p(a))ir,(a) + (B8 — ¢(a) + ra)qr, = B.

Observe that g7, can be identified by inserting oo = 1)(3):
p p

o = B N1 - b(@(B)  re(8)

Time-dependent Pollaczek-Khinchine theorem is recovered:

B B=yp(a)+ra
B—p(a) B—p(a)
B—raqr, a—9(B) B

T Bvla)  pla)-Bv()

Ee_aQ(TB) = E;T,B (Ct) + qT,H = QT,g + ng
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Method 4: Kolmogorov forward equations, ctd.

Interesting connection with concept of rate conservation.
We get back to this in Chapter 5.

Yields elegant way to show that stationary workload Q(o0) is distributed

as sum of geometric number (with success probability c) of i.i.d. copies
of B.
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Chapter 1: concluding remarks

In Exercise 1.2 you will substantially generalize result on 7(a, 3).
Instead of looking at ruin probabilities, we consider object, with
v = (71,72, 73),

p(u, t,y) = ]E(e_'YIT(u)_'YZXu(T(”)_)_'YSXU(T(“))1{7—(”) < t}).

This includes time of ruin 7(u), value of reserve process immediately
before ruin X, (7(u)—), and value of reserve process at ruin X,(7(u)).
Here X,(7(u)—) > 0 can be seen as undershoot, and —X,(7(u)) = 0 as
overshoot.
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Chapter 1: concluding remarks

In Exercise 1.5 you will establish second substantial generalization.

Brownian component is included into net cumulative claim process Y(t).
Remarkably, results for CL model (i.e., without Brownian component)
can still be used when describing transform of Y(c0).
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CHAPTER IIl: ASYMPTOTICS
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Asymptotics: main ideas

o Previous chapter: we derived transform of ruin probability.

o Interestingly, when settling for stationary asymptotics (i.e.,
P(Y(0) > u) for u large) explicit results can be found.

o Need to distinguish between light-tailed and heavy-tailed claim-size
distributions.

o Transient asymptotics (i.e., P(Y(t) > u) for u large) harder to
analyse.
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Asymptotics: main ideas, ctd.

We throughout assume E Y(1) < 0, so that Y(t) does not drift to o as
t — c0. Hence p(u) — 0 as u — 0.

Equivalently: impose net-profit condition A\EB < r.

Distinguish between claim-size distribution having a light or heavy tail:

o Light-tailed case: p(u) decays exponentially, with (for large u) net
cumulative claim process moving ‘roughly gradually’ towards level wu.

o Heavy-tailed (‘subexponential’) case: exceeding level u is (for large
u) with overwhelming probability due to a single large claim.
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Asymptotics: main ideas, ctd.

Figure: Typical trajectory of net cumulative claim process Y (t) exceeding high
level u in light-tailed case (left panel), and in heavy-tailed case (right panel).
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Light-tailed case

Assume: there is strictly positive solution 6* to the equation p(—6*) = 0;
recall

o) := logEe YW = ro — X\(1 — b(a)).

This requires Ee=*Y(1) < o for some o < 0, and therefore all moments
of Y(1) are finite (and hence all moments of Y(t) for any t > 0).

Explains why we refer to this setting as light-tailed case. It implicitly
means that claim size B is light-tailed as well; write B € .Z.

Primary objective: identify exact asymptotics of p(u) for B € £ we find
explicit function p(u) such that p(u)/p(u) — 1 as u — .
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Light-tailed case, ctd.

Change-of-measure: work with net cumulative claim process with Laplace
exponent ¢g(«) := p(a — 6*) rather than ().
Q: probability measure that goes with this alternative Laplace exponent.

Next goal: check that ¢g(«) is indeed Laplace exponent of compound
Poisson process with drift.
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Light-tailed case, ctd.
As 0* solves the equation —r6* — A(1 — b(—6*)) = 0, we can write

pla—0%) =r(a—0") — A1 — bla—6%))

— ra — Ab(~0") (1 - [m> '

Note: e’ *P(B e dx)/b(—6*) is a density of random variable with LST
b(a— 0*)/b(—6%).
We say: this density is an exponentially twisted version of original density.

Conclude: pg(a) = p(a — 6*) is Laplace exponent of compound Poisson
process where

o claim arrival rate is Ag := Ab(—6%),
o claims have LST bg(a) := b(a — 6*)/b(—6%),

o negative drift remains r.
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Light-tailed case, ctd.

Figure: Functions ¢(«) (left panel) and pg(«) (right panel). Observe:
©'(0) > 0 but ¢5(0) <O0.
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Light-tailed case, ctd.

Recall: Y(t) drifts to —oo under P, due to E Y(1) < 0. And under Q?

First note:
b'(—0*)
b(—0%)’

EqB = —bp(0) = —
with Eg(-) denoting expectation under Q.

Hence,

BeY(1) = Aq (~ 20 )~ = ~AB(=87)—r = —g/(=6") = ~¢(0)

which is positive due to convexity of (+) and definition of 6*.
Conclude: under Q process Y(-) drifts to o.
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Light-tailed case, ctd.

Main idea behind finding exact asymptotics of p(u) using Q:
o Denote by 7(u) first time that Y(-) reaches u. Hence,
plu) = P(r(u) < ).
o Perform experiment of verifying whether or not 7(u) < oo applies
under Q rather than under P.

o Under Q event {7(u) < oo} has probability 1, due to EqY(1) > 0,
but apply ‘compensation’ to correct for difference between P and Q.

o Use results from Section 1.4 to derive exact asymptotics.
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Light-tailed case, ctd.

N: index of claim at which, in our experiment, u is reached.

Hence, at that point interarrival times (say) E = (Ei,..., Eyn) and claim
sizes B = (By, ..., By) have been sampled (under Q).

With L = L(E, B) denoting likelihood ratio of (E, B) (under P, relative
to Q), we have identity

p(u) =P(r(u) < 0) = E1{r(u) < w0} = Eq(1{r(v) < w0} L(E, B)).
Here L(E, B) is Radon-Nikodym derivative, often denoted by

dP  dP

L= m = m(E,B).
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Light-tailed case, ctd.

L: ratio of the densities of all sampled quantities, where in numerator
these correspond to P and in denominator to Q.

With () and fgp(-) the densities of B under P and Q,

Ae f]p(Bl) S Ne AEw f[p(BN)
)\Q e~ ek f@(Bl) v )\Q e~ Aekn fQ(BN) '

L(E,B) =

Applying
_ 1 f(x) — e " *p(—0")

Ao b(—0*)  fa(x)

expression for L(E, B) can be rewritten.
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Light-tailed case, ctd.

L(E,B) = exp (()\@ =) i E,— 6" i B,,)
n=1 N n=1 y
= exp (—/\(1 —b(=0") >, En— 0" ). B,,)
n=1 n=1
= exp (rﬂ* ZNl E,— 0" Z B, o0 Y (r(w)
n=1 n=1
Recall p(u) = Eg(1{r(u) < o} L(E, B)) and Q(7(u) < ) = 1.

Assume B € £. For any u > 0,

p(u) = Bqe™ (@),
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Light-tailed case, ctd.

Previous Proposition holds for any v > 0; no ‘asymptotics’.
Realizing that (by definition) Y (7(u)) > u, following upper bound
follows.

Proposition (Lundberg inequality)

Assume B € £. For any u > 0,

—0*u

p(u) <e
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Light-tailed case, ctd.

Observe that we can write Y(7(u)) = u + R(u), with R(u) =0
overshoot over level u. Idea: prove that Ege ¢ R() — ~, as u — oo,
which then implies that

lim p(u) e — ~.

u—ao0

(Hp)n: ladder height process corresponding to net cumulative claim
process Y (t) (see Section 1.4).

Individual ladder heights are i.i.d., so that (H,), is renewal process
(which is, under @, non-defective); let H denote generic ladder height.

Crucial observation: R(u) is overshoot of (H,), over u.
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Light-tailed case, ctd.

Y(t)

Hs

Ha
Hs

Ha
Hy

N

Figure: Net cumulative claim process Y (t), ladder height process (H,),, and
overshoot R(u) over level u (dashed line); corresponding running maximum
process Y (t) is depicted by dotted lines.
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Light-tailed case, ctd.

Renewal theory: as u — o, overshoot converges (in distribution) to
limiting variable H with distribution function

_ X O(H >
@Hs@_LQ&;”@.

Conclude

v = EQ e_G*FI.

Use theory developed in Section 1.4 to evaluate ~.
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Light-tailed case, ctd.

First determine Eq e~*". Proposition 1.4:

EQe_aH:].—O_SD@(a) :él_b(a_e );

ro* — ra r o — 0*
use that, in self-evident notation, 1g(0) = 6*. Then,

ad A 1—=bla—0")+ (a—6")b(a—6")

d |
Bof = —lim GaEee ™ = 7lim (a—0)2
CNT—b(—0) — "B (—0*) 1
T (67)2 = e

(last equality: use that 6* solves ¢(—6*) = 0 and definition of EqY(1)).
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Light-tailed case, ctd.

By definition of A,

g 1 1
E —aH _ © 1—F —aH
Qe CEEQH( Q )’
so that
Eqe " = lim 7i(1—1€ e~H)
0 alor a EgH ©

Conclude: v = —EY(1)/EqY(1) € (0, ).
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Light-tailed case, ctd.

Theorem (Cramér-Lundberg approximation)

Assume Be . As u — o,

In practice we use, for u large,

p(u) ~ p(u) := ve """,

Exercise 2.3: you will extend this result to case where Brownian motion
has been added to net cumulative claim process Y(t).

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Light-tailed case, ctd.

In case one settles for just exponential decay rate 6*, elementary
derivation can be given, using large deviation theory.

o Let Y, Ya,... bei.i.d. random variables distributed as Y'(1).
Cramér’s theorem: for a > EY(1),

1 n
lim = logP Y > = —
lim. p og (; na) I1(a),

where /(a) := supy.q (6a — ¢(—0)) is Legendre transform of the
cumulant generating function p(—6). /(a) is non-negative and
convex, and attains its minimal value 0 in a = EY(1) = —¢/(0).

o Chernoff bound: uniformly in n,
P (Z Y = na) <e M),
i=1
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Light-tailed case, ctd.

Lower bound: for any T > 0, p(u) = P(Y(0) = u) = P(Y(Tu) > u).
Hence, for all T,u > 0,

1 T 1
-y > — logP > ).
;g plu) = = log < Tu T>

Applying Cramér's theorem:

o1
ITngf; log p(u) = =T I(1/T).

As this lower bound applies to any T > 0, we can select sharpest lower
bound. Denoting /* := T*/(1/T*) with T* := arginfr-o T I(1/T),

1
liminf — log p(u) = —I™.
u—oo U

Later we'll show [* = 0*.
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Light-tailed case, ctd.
Upper bound: first observe that (Why?)
n 0] n
p(u)éIP’(EInEN:ZY; u—r) Z]P’(Z u—r).
i=1
For given £ > 0, split into two sums:

Folr)e 8 o)

n=1 (14€)u+1

For u > r, second sum is dominated by (Chernoff bound!)

i P(i\’;zo

n=T*(14+¢e)u+1 i=1

—nl(0) _ €
Z € = 1_e 100

) 0 —(T*(1+¢&)u+1)1(0)
n=T*(14+¢e)u+1
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Light-tailed case, ctd.

First sum is majorized by (again Chernoff bound!)

,,,,,

T*(1 P Yi>u—
( +€)un=1 mTa*>El+8)u <; u r)

<ST*(1+e)u max exp (—n/(u_r>>.

n=1,...,T*(14+¢e)u n

By definition of T*, for any 6 > 0 and u large enough

oo (1(455)) - oo (om0 (50 2

forall ne {1,..., T*(1 +&)u}.

Pick ¢ large enough that T*(1 +£)/(0) > I* — §, so that decay rate of
first sum dominates.
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Light-tailed case, ctd.

Conclude:

1 1 N
limsup = log p(u) < limsup = log (T*(l +e)u e—(u—n)( *5))
u

u—0 u—oo U
=—/"+4.
Let 6 | 0.
Together with the lower bound: logarithmic asymptotics of p(u) are
given by
1
lim = logp(u) = —I".
u—oo U

Left to prove: [* = 6*.
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Light-tailed case, ctd.
Let 6(a) be optimizing argument in definition of /(a), i.e., #(a) solves
a=—¢'(-90).

Define A :=1/T so that I* = infa~o /(A)/A. To find optimizing A,
compute derivative of /(A)/A and equate it to 0. First order condition:
Al'(A) — 1(A) =0, and hence

A0 (D)A + (D) + ' (—0(A)8'(A)) — 1(A) =0.

But, as we know that A + ¢'(—0(A)) = 0, this condition reduces to
AO(A) = 1(A), i.e., p(—0(A*)) = 0 for optimizing A*.

Hence, 0(A*) = 0*. Conclude
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Light-tailed case, ctd.

Minimization infaso /(A)/A has following appealing interpretation.

A: slope at which Y(t) moves from level 0 to level u, which ‘costs’ /(A)
per unit of time. Time needed to reach u is proportional to 1/A.

When optimizing cost /(A)/A over A, we obtain ‘cheapest’ slope.
Trade-off: low A leads to low cost per unit of time but then unusual
behavior has to persist for long time, and vice versa for high A.

Timescale T* := 1/A* has similar interpretation: T*u is typical time to
reach u. (In proof: first sum, containing timescales around T*u,
dominates second sum.)
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Subexponential case

Result from Chapter 1:

) -7 ($850) -p (@),

where B is ‘residual’ of B, and G is geometric with success probability
c:=1-—XEB/r.

The density of B is given by
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Subexponential case, ctd.

In previous section: claim-size distribution was light-tailed (so that all
moments exist).
Now: what happens if this condition is violated?

We assume that B is such that, as v — 0,

P(B*? > u)
P(B>u

— 2.

(If the sum of two i.i.d. copies of B is large, this is due to one of them
being large, rather than both of them significantly contributing.)
Write: B € .7 with .7 set of subexponential distributions.

In general neither B € .7 implies B € .7, nor B € < implies Be.”. But,
for broad set of relevant distributions, B € .% and B € . are equivalent.
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Subexponential case, ctd.

Assume B e .. As u — oo,

First: some auxiliary results, covering useful properties of subexponential
distributions.
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Subexponential case, ctd.

Lemma

(i) If Y € Z, then, as u — o

IP( *lZU)
P(Y>u

(i) If Y € 7, then for all ¢ > 0 there exists a constant K. such that, for
all i and u,

P(Y* > u) < K.(1+¢) P(Y = u).
(iii) Let Y1, Ya, ... be iid., distributed as generic random variable Y .
Let | € Ny be independent of Y1, Yo, ... with Ez! < co for some z > 1.
Then, as u — o0,

Y*I >
MY 29 g

P(Y >u
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Subexponential case, ctd.

Proof. Part (i) follows inductively from definition.
Part (ii): see proof in book Asmussen & Albrecher.

Part (iii) is ‘stochastic version' of part (i). Proof relies on bounded
convergence; see proof Lemma 2.2.

Proof of Theorem. Combine geometric sum representation with part (iii)
of Lemma. In addition, observe that

001 1—c

and Ez® < w0 if ze (1,1/(1 — ¢)). Conclude that
p(u) l1-c
P(B > u) c
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Subexponential case, ctd.

Examples of subexponential distributions: Pareto, lognormal, and
Weibull. Then P(B = u) is given by, respectively,

a1 () e
u g

with ®(-) distribution function of standard normal random variable.

Assumptions imposed on parameters:
o In Pareto case: A > 0 and n > 1 (to ensure that EB < o0).
o In lognormal case: € R and ¢ > 0.
o In Weibull case: ¢ > 0 and n € (0,1).

Book: argumentation that residuals of these distributions are
subexponential as well.
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Subexponential case, ctd.

Principle of single big claim: in subexponential regime, event
{Y(0) = u}, for u large, is essentially due to single big claim.

Informal backing:

Suppose u is to be exceeded at time t. Then Y(t) is roughly at

—rct = —(r — AEB)t, so that big claim arriving at time t should have
size at least u + rct. Leads to approximation, for A | 0,

0 0
p(u)wZ/\AIP’(B>u+rckA)—>)\f P(B > u + rcs) ds.
k=0 0

This confirms Theorem: performing change of variable v := u + rcs,

A (* AEB _ — 1-c¢
~ — P(B>=v)dv = P(B>u) =
plu)~ 2 | BB > vy = 22 R(B > ) =

P(B > u).
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Subexponential case, ctd.

Exercise 2.5: other technique to find tail of p(u) for B in subclass of .7,
based on Tauberian theorems (one-to-one relation between shape of LST
near origin and tail behavior, if tail of rv is effectively power-law).

Concretely, for 6 € (1,2), the following equivalence holds:

. Ee @ —-1+aEZ . s N
IOIL?(]) a6 = T] < uleOOP(Z = U) u = 7@,
here n > 0 and I'(1 — 0) < 0. Likewise, for 6 € (0,1),
. Ee -1 . s 7
M= =1 = mPZ>uu =

here n > 0 and (1 — 6) > 0. More general form involves regularly
varying functions.
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Subexponential case, ctd.
What about finite-horizon ruin probability? Focus on p(u, tu) as u — oo,

for given t.
o Light-tailed case: by large-deviations argumentation,

1 1
lim =1 ty=— inf TI(=).
im, 5 loeplu ) == inf <T>

u—0o0

(Provide intuitive backing.)
o Subexponential case: by principle of single big claim:

A u(1+rct)
f P(B = v)dv

tu) ~ —
plu, tu) ~
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Heavy traffic

Focus on behavior of Y () as ¢ =1 — AEB/r | 0 (in queueing literature
heavy-traffic regime). In this regime safety loading r/(AEB) — 1 is
positive but small.

Starting point: Pollaczek-Khinchine formula of Corollary 1.1, i.e.,

rca

—a¥Y (o) _
Ee ra—A(1— b))

Distinguish between light-tailed setting (Var B < o0) and heavy-tailed
setting (Var B = o0). Write Y.(c0) rather than Y (c0).
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Heavy traffic, ctd.

First case Var B < co0. Clearly Y.(o0) explodes as ¢ | 0, but ¢ Y.(0)
converges to non-degenerate limiting random variable:

Ee—caVc(OO) _ rc2a
rca — A1 — b(car))
B rc’a
 rca—AEBca — LE[B?] c2a? + O(c?))
B rc’a
~ rea—r(1—c)ca + 2AE[B2] c2a2 + O(c3)
r

T+ IAE[BY] o’

as ¢ | 0. Lévy's convergence theorem: conclude that ¢ Y (c0) converges
to exponentially distributed random variable with mean
ANE[B?] 10 E[B?]
2r 2EB -
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Heavy traffic, ctd.

Case Var B = o (or, equivalently, E[B?] = o) should be done
differently. Consider special case that, for some § € (1,2) and A > 0,

A _
P(BZU)"'*mU 6

as u — o0. Tauber: as o | 0,
b(a) =1+ aEB ~ Aa®.

Now, with ¢ := 1/(6 — 1), c¢ Y(o0) converges to a non-degenerate
random variable:

 e—cCaVu(e) _ rel o R r
rcSa— A1 —b(cca))  r+ NAad-1’

as ¢ | 0. Recognize LST of Mittag-Leffler distribution.
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Michel Mandjes (KdVI-UvA)



Regime switching: main ideas

o Previous chapters: a given net cumulative claim process Y(t) was
considered.

o Now: when exogenous finite-state Markov chain is in state /, net
cumulative claim process behaves as Y;(t).

o Extension of time-dependent Pollaczek-Khinchine theorem.

o By-product: ruin probability with phase-type (rather than
exponential) killing.
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Regime switching: net cumulative claim process

This chapter: regime-switching (or Markov modulated) version of the
standard Cramér-Lundberg model.

Modulating process, in our case a continuous-time Markov chain J(t) on
{1,...,d}: regime process or background process.

There are d net cumulative claim processes Y;(t), all of them
corresponding to a compound Poisson process with drift.

Net cumulative claim process Y(t) evolves as process Y;(t) when

J(t) =i.
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Regime switching: net cumulative claim process, ctd.

Description of regime process:

o

J(t): Markov process with transition rate matrix Q.

O

(Up)n: sequence of its jump epochs.
o We do not assume modulating process is irreducible.

o In addition,
~qi = »,q; >0
JFi
for all non-absorbing states i, whereas q; := —q;; = 0 for absorbing
states /.
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Regime switching: net cumulative claim process, ctd.

Description of net cumulative claim process:

o Yi(t),..., Yq4(t): independent compound Poisson processes with
drift, evolving independently of J(t).

o Recall: (U,), is sequence of its jump epochs.

o Laplace exponent of Y;(t) is
0ila) == ria — A (1 - Ee—aB‘”) = ria— Mi(1 — bi(a)).

o Then, in case J(t) =i for t € [U,, Upt1), net cumulative claim
process Y (t) locally behaves as Y;(t):

Y(t) - Y(Un) = Yl(t) - Yl(Un)
for all t € [U,, Upy1).
With Y;(0) = 0 (for all i = 1,...,d) this mechanism fully defines Y(t).
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Regime switching: net cumulative claim process, ctd.

Y (t) U

Us Us

NI

N\

\I t

Figure: Net cumulative claim process Y'(t) for regime-switching compound
Poisson process with d = 2. In this example, J(t) = 1 for t € [0, U1) and
t € [Uz, Us), whereas J(t) = 2 for t € [Uy, U2) and t € [Us, Ua).
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Regime switching: net cumulative claim process, ctd.

We do not assume that all premium rates r; are positive.
Let S be set of indices i for which r; < 0; this is set of subordinator
states, i.e., states i for which Y;(t) is non-decreasing with probability 1.

Define
Y(t):= sup Y(s),
se[0,t]
Vi(t) == sup Yi(s),
se[0,t]

forie{l,...,d}.
Goal: analyze

pi(u,t) :==P(Y(t) = u[J(0) = i) = P(Z(t) = u),
where Z;(t) is Y (t) conditional on J(0) = .
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Regime switching: net cumulative claim process, ctd.

Goal: determine Laplace transform of p;(u, t) with respect to u,
evaluated at a ‘killing epoch’ rather than a deterministic epoch.

Chapter 1: (exponential) killing rate was constantly .
Now: (exponential) killing rate is 3; when J(t) = i.

Denote killing epoch by 7v'5, where
ﬁ = (517 v 7Bd)T~

(As before, Tg, with scalar subscript 3, still denotes exponentially
distributed random variable with parameter .)

We aim to evaluate

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Non-subordinator case

Suppose i € {1,...,d}\S.

Given that J(0) =/, time till either killing or transition of background
process is exponentially distributed with parameter 0; := 8; + q; (Why?).

To exceed v, this can either happen before this epoch, or (in case event
does not correspond to killing) after background process has jumped to
another state. Hence,

with

55(u) = L"P(mm € dv, Yi(Ty) + Z(T5) > u),

where Zj(f'ﬁ) is independent of (Y;(Ty,), Yi(Ty,)).
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Non-subordinator case, ctd.

Evaluate transform (with respect to u) of first term, using results of
Chapter 1.

With () the right-inverse of ©;(-),
* —au /. — 1 _ 70(\_’,-(T9.)
e P (Yi(Ty,) = u) du = 1-Ee i
o

0
B soi(a:)l — i (‘P’g}‘) - 1/);%:‘)) '
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Non-subordinator case, ctd.

Evaluate transform (with respect to u) of second term.
Recall: Y;(Ty,) and Y;(Ty,) — Yi(Ty,) are independent (Wiener-Hopf

decomposition), with Y;(Ty,) — Y;(Ty,) exponentially distributed with
parameter y; := ¥;(0;).

Hence,

a0
J e 4§ (u) du
0
0 u Q0 _ .
= J- e_a“f J P (Yi(Ty,) € dv) xie X*pj(u— v +z, Tg) dzdu
u=0 v=0Jz=0
0 u Q0 _ .
= J e*a”J J P (Yi(Ts,) € dv) xie X4 pi(w, Tg) dw du
u=0 v=0Jw=u—v

(last step: change of variables).
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Non-subordinator case, ctd.
Swap integrals:

° © w+v ) V
J j (J e—(a—Xf)udu> P (Yi(Ty,) € dv) xie X o (w, ) dw,
v=0Jw=0 u=v

Evaluating the inner integral and rearranging terms:

o]

. w -_
Xi f e P (Yi(Ty,) € dv) J (e7X — ™) pi(w, Tp) dw.
@ —Xi Jo 0

Combining the above,

* —au £ _oh(D. 70&?[(7—91.) W'(wi(ai)vﬁ)_ﬂ—'(aaﬁ)
JO e 0;(u)du=1;(0;)Ee J a—w;(e,-)J

Use expression derived for the Laplace transform of Yi(Tj,):

Jw e JU(U) du G,Wj(qﬁi(oi)ng) - 7Tj(awg).

0 Y pila) = 0;
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Non-subordinator case, ctd.

Upon multiplying expression of previous slide by g;; and summing over
j = i, following result is obtained.

Foranya>0and3>0, andi€e{l,...,d}\S,

(a.B) = 1 pi(a) 0
71'/( 7ﬁ) QD,'(CV) _ei ( @ w,(el)) A
mi(i(0), B) — mi(a, B)
D T A
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Subordinator case
Now suppose that i € S. Then Y;i(t) = Y;(t) for any t > 0. Hence

¥ qij
pilu, To) =P (Yi(Ty,) = u) + 2, 5 (u),

jEi !

with ”

mi(u) = L B (Yi(To) € dv) P (Z(Fa) = u—v).

First term:

JOOO e P (Yi(Ty) = u)du= é (1 - Ee*O‘Y"(TBi)) = gza,-(oz;—&wi(ia)'

Second term, observing that n;;(u) is a convolution,

o 0;
| et o - 5 ey @ B)
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Subordinator case, ctd.

Foranya>0and 8>0,andi€S,

o — 1 ﬂ-_]( ?16)
l( 7[3) SDI( ) ;qusp’(a 0’
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Equations in matrix notation
Define vector of transforms
71'(0[,/6) = (Wl(Oé?ﬁ)v s ”’Td(aa:@))—r'
Write, with k(a, 3) the corresponding column vector,

_wile) b (i (0), B) 17
ri(a, @) == = fwi(ei)l{/¢5}+;quw,<¢,<9,),ﬁ>1{:¢5}-

In addition, let (i, /)-th entry of matrix M(«, 3) be given by

mjj(a, B) == (pi(er) = 0;)1{i = j} + q.

Proposition

For any a« = 0 and 8 > 0,

M(e, B) w(e, B) = (e, B).
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Equations in matrix notation

Hence, for any given a > 0 and 3 > 0, if M(a, 3)~! exists,
(o, B) = M(ar, ) (v, B).
Denote by d° number of states in {1,...,d}\S.

For given vector 3 of killing rates, characterization of Proposition still
contains d° unknowns:

wilB) = — 2+ S gy mi(1(61), B)

il o
forie{l,...,d}\S.

Next goal: identification of these d° constants.
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Identification of unknown constants

Three stages: state space of J(t) is
o one recurrent class,
o one transient class and one recurrent class,

o multiple transient classes and one recurrent class.

Proposition (lvanovs—B-M)

Suppose background process J(t) consists of single (hence recurrent)
class. Let Yi(t),..., Ya(t) be compound Poisson processes with (not
necessarily negative) drift.

Then, for any componentwise positive vector 3, equation
det M(a, B) = 0 has d° solutions for o € C that have positive real part.
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|dentification of unknown constants, ctd.

Start with case of one recurrent class.
Define matrix M, j(«, 3) as matrix M(«, 3) but with i-th column
replaced by k(a, 3).

Then, by M(«, B) 7(a, B) = k(a, 3) and Cramer's rule,

B det Mn,i(a7ﬂ)
i B) = e M(a. )

As 7i(a, B) is finite, any zero of denominator should be zero of the
numerator. Because J(t) is irreducible, we can apply Proposition:
det M(«, 3) = 0 has d° zeroes in right half of complex plane.

Assume that these zeroes have multiplicity 1; we call them ag,..., ago
(each of them depending on vector of killing rates 3).
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|dentification of unknown constants, ctd.

For given Band i=1,...,dandj=1,...,d°,
det M&,‘(Oéj,,@) =0.

This seemingly yields d x d° equations to determine the d° unknowns w;
(for i ¢ S). However, all equations that correspond to specific index
je{l1,...,d°} effectively provide same information.

This is shown as follows.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



|dentification of unknown constants, ctd.

Let m;(«, B) be i-th column of M(«, 3). Suppose (for fixed i) that
det M(a, 3) = 0 and det My, j(a, B) = 0 for some « € C with a positive
real part. Hence M(«, 3) and M, ;(«, 3) are singular, so that

d
ij(a,ﬁ)vj =0, ij(a,ﬁ) u+k(a,B)u; =0
j=1 JFi

for some u and v. Therefore, for any i’ + i,

d
0= —Uujy Z mj(a7ﬁ) Vi + Vi'zmj(avﬁ) uj + vir K/(avlﬁ) uj
j=1 J¥i
= —upvimi(a, B) + Y. (virs; — upv;) my(er, B) + vy k(a, B).
JFiLi
We found linear combination of columns of M, i/(«, 3) that equals 0.

Hence, M, (v, 3) is singular, and det My, i(a, 3) = 0. Conclude that,
for j fixed, varying i does not provide any additional constraints.
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|dentification of unknown constants, ctd.

Hence, for any j = 1,...,d° we can focus on det M, 1(aj,3) = 0 only
(we take i =1, that is).

Let M;(a,B) represent (d — 1) x (d — 1) matrix which results after
deleting i-th row and j-th column from M(«, 3). Recall that

il .
e B) = P B¢ )
the equation det My 1(cj, 3) = 0 can be rewritten as

Z@ (—1)'*'det Mil(aja B)
i€eS J

+ Z <(pi(§zo'éj) + wi(5)> (—1)**'det M1 (e, 8) = 0.
i¢S J

We thus obtain d° equations (linear in d° unknowns w1 (8),...,wq4(8)).
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|dentification of unknown constants, ctd.

Now: single transient class, say T < {1,...,d}, besides the recurrent
states (which could correspond to single class or multiple classes).

We know how to compute 7;(a, 3) for any i¢ T. Forie T,

Z mij(e, B) mj (e, B) = ki, B) — 2 mjj(o, B) mj (v, B).

JjeT JET

Right-hand side we know; denote it by 7;(a, 3). Define d := | T| and
d® :=|T\S|. In addition, define d x d matrix

M(aw@) = (mij(a,ﬁ))i,jeTa

and let d-dimensional vector 7 (v, 3) represent the entries of 7 (v, 3)
that correspond to states in T. As a result, we have found the equation

M(a, B) 7 (a, B) = R(a, B).
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|dentification of unknown constants, ctd.

Suppose det M(a, 3) = 0 has d° zeroes in the right half of the complex
plane, then we would be done.

In light of Proposition, we have to verify that entries of M(c, 3) are of
the form

mij(e, B) = (pi(a) — 0;)1{i = j} + Gy,

with transition rates gj corresponding to single recurrent class.

Rewrite diagonal elements of M(«, 3) by adapting diagonal elements of
rate matrix and killing rates:
mii(o, B) = pi(a) — Bi + qi = @i(e) — Bi + Gir,
with
Gii=— Y. @ Bi:= (3:‘ + 3] %’) :
JeT\{i} JeT
Conclude: M(c, 3) has desired form.



|dentification of unknown constants, ctd.

Hence, Proposition applies, implying that M(a, 3) = 0 indeed has d°
zeroes in right half of complex plane (for any componentwise positive
vector 3).

We can therefore identify w;(3) for i € T\S by solving linear system, as
before.
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|dentification of unknown constants, ctd.

Finally: multiple transient classes, say T1,..., Tk. Let R denote union of
all recurrent states.

Write Ty ~ Ty, with k, k" € {1,..., K}, if there is a direct transition
from a state in T to a state in Ty (i.e., if there are j € Ty and j € Ty
such that g; > 0).

Define ‘layers’ recursively: Gy := R, and

m=0

n—1
C, = {Tk : for all kK’ such that Ty ~» Ty it holds that k" € U Cm} .

Observe: number of layer sets C, is (including Cy) at most K.
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|dentification of unknown constants, ctd.

Above: computation of m;(a, 3) for i € R and i € C;. Now: (a, 3) for
i € Cp, knowing m;(a, B) for ie R, Cy,..., Ch1.

Suppose Ty € C,. As states in C, have no direct transitions to classes
outside C,_1, we have for i € T, that

3 my(n, B) mi(e, B) = mi(a, B) — > my(a, B) (e, B).

jeTk JjeCh—1

As right-hand side contains known quantities only, analysis is as in case
of single transient class. Specifically, number of zeroes (in right half of
complex plane) of determinant of (mjj(c, B))i jet, equals number of
states in T that do not correspond to non-decreasing subordinators.
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CL over phase-type horizon

Chapter 1: conventional CL model, with focus on double transform of
p(u, t). Transform over time: ruin over exponentially distributed interval.
Now: extension to class of phase-type intervals &.

Class £ is relevant, as any distribution on the positive half-line can be
approximated arbitrarily closely by distribution in &2.

This actually holds true for the smaller class #7° ¢ & of mixtures of
Erlang distributions.
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CL over phase-type horizon, ctd.

Phase-type distribution: absorption time of a continuous-time Markov
chain. That is, each distribution in &2 is characterized by

o a finite state space {1, ..., d},

o initial probability vector & € RY,

o d x d transition rate matrix F = (fij)?:j:1 (i.e., it has non-positive
diagonal elements, non-negative non-diagonal elements, and row
sums equal to zero),

o non-negative exit vector f.
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CL over phase-type horizon, ctd.

We define additional transition rate matrix, with diag(f) denoting
diagonal matrix with f on its diagonal,

ﬁ::<F—ggg<f> g)

Dimension of F is (d +1) x (d + 1), where state d + 1 is absorbing
state. Note that F is genuine transition rate matrix: row sums equal 0.

Definition of phase-type random variable: time it takes to reach absorbing
state, if initial state has been drawn according to distribution 4.

Rule out matrices F in which, starting from any state i with §; > 0, state
d + 1 is not eventually reached.
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CL over phase-type horizon, ctd.

Now consider compound Poisson process with negative drift, say Y(t).
Consider P € & characterized by parameters (d,d, F, f).

Objective: evaluate
Q0 0
f J e *p(u,t)P(P € dt) du.
o Jo

Evaluation of this transform falls in our framework:

o let Yi(t),..., Yq(t) be independent copies of Y(t), such that
compound Poisson process with drift is same for any state of
background process (say with Laplace exponent ¢(a)),

o to represent the killed state, let Yy.1(t) =0,

o choose @ = F and 3 = f such that absorption in state d + 1
corresponds to killing.

Immediate: above transform equals 27:1 oimi(a, B3).
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CL over phase-type horizon, ctd.

Any distribution on the positive half-line can be approximated arbitrarily
closely by distribution in £2°, i.e., the class of mixtures of Erlang
distributions.

Let § = (d1,...,d4) be probability vector, and Ex(/3) be Erlang
distributed rv with parameters k € N and 3 > 0. This means

- Bk k1
(k—=1)!

P(Ec(B) € dt) = dt.

Then P e &° is characterized by 8, B € Ri:

d
P(P € dt) Z P(Ey () € dt).
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CL over phase-type horizon, ctd.

Hence, to evaluate, for P € £7°,

f f )P(P € dt) du,

it suffices to be able to evaluate it for an E,(8)-distributed horizon.

Indeed, if we can compute

Vi || e et o P(ES) < dt)

JOO JOO ( ) Bt /Bktk_l
= e p(u,t)e” dt du,
o Jo (k—1)!

then transform can be expressed as

d
Z (5,‘ 7T[k
i=1

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)




CL over phase-type horizon, ctd.

But wl¥l(a, B) can be computed easily from 7(a, ) = 7lH(a, B), i.e.,
the transform corresponding to the ruin probability over exponentially
distributed horizon.
To this end, define

7T(e) (0% = difTF (6% .
( aﬂ) d/Bg ( 7/6)
For k e N,
5 (=8
Tr[k] (Ol,ﬂ) = f' W(Z)(Oé)/g)
£=0 :
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CL over phase-type horizon, ctd.

Proof. Definition of wlkl(a, 8) implies that

(=8)* ( d"* (. B)
e ] <d5"—1 E >

Observing that, by the binomium,
dk—1 7(c, — (k—=1-2)!
dﬁk—l Z < > ﬂ) (_ﬁ)k_g )

the stated follows immediately.
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Resampling

At Poisson instants (rate ) the ‘parameters’ of the net cumulative claim
process become (A;, bj(a), r;) with probability p;, where i =1,...,d,
independent of history.

Motivation: every now and then, environment randomly changes,
modeled by resampling.

This fits in model of this chapter, when picking
Q=v ].pT — Z/Id,

with 1 an all-ones vector and Iy the d-dimensional identity matrix.
(Check!)
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Chapter 3: concluding remarks

In Exercise 3.1 you will consider a modulating process with one transient
and one recurrent state.

In Exercise 3.2 you will consider a two-dimensional modulating process
with one states corresponding to a non-decreasing subordinator.
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CHAPTER IV: INTEREST AND
TWO-SIDED JUMPS
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Interest & two-sided jumps: main ideas

Compared to conventional CL analysis, three additional elements are
introduced:

o Insurance firm receives dividend over its reserve level. We apply
interest rate r° > 0.

o Besides claims, leading to negative jumps of reserve level, we also
allow positive jumps (to be thought of as capital injections).

o As before we aim at characterizing probability of ruin (transformed
with respect to the initial capital surplus level) before exponentially
distributed time, but now jointly with three other quantities: time of
ruin, undershoot, and overshoot. See also Exercise 1.2.
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Interest & two-sided jumps: main ideas, ctd.
Objective: analyze, for a given initial capital surplus level v,
p(u,t,~) = ]E(67717(”)772)@(T(”)7)773XU(T(”))1{7-(u) < t}),
where v = (71,72,73) |, by evaluating its transform.

With T3 exponentially distributed time with parameter 3, we consider

Q0 Q0

e~ Be Ptp(u,t,~) dt du = J e “p(u, Tg,~) du.
0

n(a,6,m) = |

0

Plugging in v = 0, we recover objects of Chapter 1.

For conciseness, in the sequel we write, for given 8 > 0 and ~ such that
1,72 = 0 and 73 < 0 (Why these signs?),

p(u> = p(u, Tﬂ77) - E(e—'hT(U)—'Yqu(T(U)—)—’stu(T(U))]_{7-(“) < TB})
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Interest & two-sided jumps: main ideas, ctd.

First model extension:

o As before, claims arriving according to Poisson process,
corresponding to downward jumps in X, (t). Here A_ > 0 is arrival
rate, and b_(«a) the LST of generic claim size B_.

o In addition, there are upward jumps in X,(t), which could for
instance represent capital injections, arriving according to Poisson
process with rate Ay = 0. We let by (a) be LST of generic upward
jump B.
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Interest & two-sided jumps: main ideas, ctd.

Second model extension: insurance company receives interest (at rate
r° = 0) over its current reserve level.

Hence, with S; denoting i-th jump epoch of the reserve level process
Xu(t), between two consecutive jump epochs S; and S; ;1 process X, (t)
evolves according to differential equation

dX,(t) = rdt + r° X,(t) dt.

It follows that, for t € (S;, Si+1),
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Interest & two-sided jumps: main ideas, ctd.

Xu(t)

. | Xu(r(w)-)

t

Xu(7(u))

Figure: Sample path of X, (t) until 7(u). Upward jumps are distributed as
generic random variable B, downward jumps are distributed as generic
random variable B_.
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Exponential upward jumps
First step: by ‘classical Markovian reasoning’, with A := A_ + A4,

u

p(u) = e At ()\_ AtL P(B_ € dv)p(u—v)

+ A Atf P(B_ € dv) e 724 g7 73—V
0

+ A4 Atf pe *p(u+v)dv
0

+(1—ANAt—BAt)p(u+rAt+ rOuAt)) + o(At).

o Use that between jumps process grows according to solution of
differential equation.

o In considered interval of length At time till ruin 7(u) grows by At.

o Undershoot X, (7(u)—) and overshoot X, (7(u)) can be assigned
their values when surplus level drops below 0 (due to negative jump
of size at least u).
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Exponential upward jumps, ctd.
Linearize e 7* 2t and p(u + r At + r°uAt): as At | 0,

u

p(u) =plu+rAt+ rPullt) + A Atf P(B_ € dv)p(u—v)
0

o0

+ A Atf P(37 e dv) e 24 e—'Y3(u—V)

u
o0

+ Ay Atj pe Mp(u+v)dv— (v + A+ B) At p(u) + o(At).
0

Subtract p(u + r At + r°u At), and divide by At: as At | 0,

p(u+rAt+ rPuAt) — p(u) o f”
- =AM | P(B_ed —
NI (r+r°u) =X\ . (B_edv)p(u—v)

0
+ A_J P(B_ € dv) e ¥ e~ 13(=Y)

+ A4 JOOO pe Mplu+v)dv— (v + A+ ) p(u) + o(1).
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Exponential upward jumps, ctd.

Then take limit At | 0, to obtain following integro-differential equation.

Lemma

For any u > 0,

—p'(u) (r+r°u) =X_ (B_ e dv)p(u—v)

0

JP
oe]
+ A J P(B_ € dv) e 724 e~ 72(u=Y)

u

+>\+qu6 Wp(u+v)dv—(y1+ A+ B)p(u).
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Exponential upward jumps, ctd.

Next goal is to evaluate 7(«) = (v, 8,7) = an(«, 8,7)
(interpretation: p(u) in which the initial reserve level u is exponentially
distributed with parameter ).

Transform full integro-differential equation of Lemma with respect to u:
multiply both sides by ae™®", and integrate over u € (0, 0).

Objective: obtain equation that is fully expressed in terms of 7(a). We
do so by considering each term separately.
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Exponential upward jumps, ctd.

o First term LHS: by integration by parts,

- LOO p'(u) rae”*" du = ra(p(0) — #(a)).

o Second term LHS:

Q0 0
—f p'(u) rruae™ " du = roaf p(u)(e™* — uae ) du
0 0
= r°a7 (),
using standard identity
= Q0
7' () = ) —f uae *p(u)du
@ 0
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Exponential upward jumps, ctd.

o First term RHS: upon interchanging the order of the integrals,

A f (J (B_ e dv) p(u— v)dv) e dy
-y f (J p(u—v) ae_o‘(“_")du> P(B_ e dv)

= A_b_(a)7(a).

o Second term RHS:

A f U (B_ € dv)e 2 g~ 73U V>> —au

vV _ g—(atr2)v ) -
= A,aJ  —  PB_edv)=Aa b-(=7s) = b-(a+72)
0

a+y2+173 a+ 72 +73

Note: o« = —72 — 3 is a removable singularity (Why?).
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Exponential upward jumps, ctd.

o Third term RHS: applying transformation w := u + v,

o0 Q0
Ay f (f pe " p(u+v) dv) ae”* du

0 0
At Fa) a2
w—« =«

T(p).

Notice: o = p is removable singularity, but requires some extra care.
o Fourth term RHS: by the definition of 7(a),

- fm S A+ B) pu) ae du = —(m + A+ ) 7(a).
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Exponential upward jumps, ctd.

Introduce some notation: we let A:= —(v; + 3)/r° and

= A = v r Al—=b(a) A 1
Flo) = Fle)+ 2, Fla)im L iy 2
A b (—y)—b (at+m) r Ar 1
Gla) = o=l Zp(0) - 2 ().

Proposition
0, 7(+) fulfils the differential equation

7' (a) = F(a) () + G(a).
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Exponential upward jumps, ctd.

Differential equation of Proposition is routinely solved using the method
of variation of constants. With F,(«) the primitive of F(«):

#(a) = ( [ 6w e (- o+ K) exp (F.(a)).

As a consequence of the fact that F,(a) — o as o — o0 (Check!), we
have that 7(o0) = p(0) € (0,1) necessarily implies that

K=— JOO G(n)exp (— Fi(n)) dn.
0

Hence,

T(a) = — (Loo G(n)exp (— Fu(n)) dn) exp (Fu(@)).
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Exponential upward jumps, ctd.

Left: determination of the two unknown constants p(0) and 7(u). To
identify these, write G(a) = p(0) Gi(a) + T(u) Go(a) + G3(«), where

r Ay 1 :)\;b,(—%)—b,(a—kyg)

Gi(a) == % G(a) = Gs(a) : pe p————

roopu—a’
Analogously, define I(a) as p(0) h («) + () () + (), where
ke) = [ Gutn)exp (— Fulo) o

To obtain constraints that are used to determine p(0) and 7(u), note
that if for some o we have that F,(a) = o0, then necessarily /(«) = 0,
due to finiteness of 7(«).
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Exponential upward jumps, ctd.

o Shape of F(-) reveals that, for some constant Dy < 0,

F.
G}
al0 loga

= Lo,

which implies that F,(a) — o0 as a | 0, and hence /(0) = 0 (so that
K = 0). We find

P(0)h(0) + 7 (1) k(0) = —£(0).
o Analogously, for some constants D, € R and D,, < 0,

Fo(a) — Du

atu log(p—a) — 7"

so that F,(a) — o0 as a 1 p. Hence, /() = 0, and therefore

PO)h(p) + () l2(p) = — (k).
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Exponential upward jumps, ctd.

Hence: two linear equations, in equally many unknowns. We find

BO)h(w) = bh©O) .« h(0)h(s) = h(1)h(0)
PO = @b — a0 " T L)k — h(1)h(©)

We have thus arrived at final result.

Theorem
If r >0, then

@) == ([ 6w (— Futn) dn) o (),

with p(0) and (1) given above.
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Exponential upward jumps, ctd.

Next result: alternative way to describe 7(-): through a power series
expansion.

Writing, for coefficients f, and gy,
[o0] _ [oe]
- ', Glo) = Y
(=0 £=0

we have found differential equation
o8] _ A 0]
- <Z frat + ) (o) + 2 gt
(=0 @ =0

Writing ¢, := 7(9)(0), this differential equation can be rewritten to

OOC [es} [es}
e+1e (ZW+ >Z€a£+2gea
=0

£=0
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Exponential upward jumps, ctd.

Collect terms corresponding to same power in both sides, coefficients ¢
can be determined. After some algebra, we find that cx obey following
recursion.

Proposition

The power series expansion of 7t(c) is .,- 5 c; * /¢!, where co = 0 and,

for{ e N,
1 A -1/ 0
Ce+1 = (E B 1)!> (;O fnCo—m + gz) .

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Relaxation of exponentiality assumptions

Seeming drawback: exponentiality assumptions imposed.

Concretely, T(a) corresponds to the situation in which
o initial reserve level,
o killing, and
o upward jumps

are assumed exponentially distributed.

What can we do about this?
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Relaxation of exponentiality assumptions, ctd.

Section 3.4: approximate distribution on the positive half-line by a
distribution in the class of phase-type distributions &2. Even smaller class
of distributions suffices: &7°, class of mixtures of Erlang distributions.

For instance: any number z > 0 can be approximated arbitrarily closely
by Erlang distribution with shape parameter k and scale parameter k/z,
with k large.

Goal: compute p(U, T,~) with initial level U and time horizon T in &°.
Extends results of Section 4.3, where we found 7(a) = p(Ua, Tg,7),
with U, exponentially distributed rv with mean o~ 1.

Section 3.4: to deal with distributions in £2°, it suffices to deal with U
and T Erlang distributed. Relying on Proposition 3.5, translate results
for U or T being exponentially distributed to their Erlang counterpart.
Following example presents explicit procedure, for Erlang distributed
initial reserve level U.
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Relaxation of exponentiality assumptions, ctd.
Let initial level U be Erlang with parameters k and «.

Idea: use Proposition 3.5. Requires derivatives 7(“)(-). We know 7(a), so
our differential equation gives

7D (a) = F(a)7(a) + G(a).
But then also
7 (a) = FV(a >7‘r<a> + F<a>fr<l>< o (o)
= (F®(@) + (F(a))?) #(@) + F(a)6() + 6V (a).

This way, we can compute all 77(‘7) (c) recursively in terms of 7(«).
Concretely (Check!), 79 (a) = Ag(a) T(a) + By(a), where Ay(")
By(+) follow by
Arri(a) = Ay(e) + Ag(a) Fa),  Brya(e) = Ag(a) G(a) + By(a);

recursion is initialized by A;(a) = F(«) and Bi(a) = G(a).

and



Relaxation of exponentiality assumptions, ctd.

o When upward jumps are distributed as mixture of exponentials, with

density
K
Z gie M
i=1

for some k € N, constants gy, ..., gk, positive parameters fi1, ..., fk
(such that g1/p1 + -+ - + gk/pik equals 1), and v > 0: analysis can
be extended immediately.
New functions F(-) and G(-) have poles at p1, ..., pk; function G(-)
contains unknowns T(u1), ..., 7(uk). Resulting k + 1 unknowns
(i.e., (p1), ..., m(uk) and p(0)) can be determined as before.

o When upward jumps are Erlang distributed: analysis becomes much
harder; see short account in book.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



CHAPTER V: ALTERNATING
NET CUMULATIVE CLAIM PROCESS
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Alternating net cumulative claim process: main ideas

This chapter: net cumulative claim process displays different behavior
above and below threshold v € (=0, u), with u > 0 denoting initial
reserve level.

Denote resulting net cumulative claim process by Y, (t) and its running
maximum process by Y, (t), and focus on evaluating the ruin probability,
ie.,

P, v, £) i= BV, (8) > u).
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Alternating net cumulative claim process: model

Model description:

o When Y, (t) is below v, claim arrival rate is A_, premium rate is r_
and claims have LST b_(«) (also when claim under consideration is
such that corresponding jump process Y, (t) exceeds v).

o When Y, (t) is above v, claim arrival rate is Ay, premium rate is ry.
and claims have LST b, («).

We focus on the (somewhat more complicated) variant that v € (0, u);
case that v € (—o0, 0] can be dealt with analogously.

Object of interest: probability p(u, v, Tg) of ruin before exponentially
distributed epoch Tg.
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Scale functions

Consider net cumulative claim process Y (t) in non-alternating setting,
i.e., with claim arrival rate A\, premium rate r, and claim-size distribution
having LST b(«).

We focus on computing, for u_ >0, u; >0 and 8 >0,

P(o(u-) < min{r(uy), Ts}),
O4 (umyuy, ) := P(7(uy) < minfo(u), Ts});
Y

here 7(u, ) is first epoch that Y(t) enters [uy,00) and o(u_) is first
epoch that Y(t) enters (—o0, —u_]. Note: observe that
Y(o(u-)) = —u_ (Why?).

Laplace exponent p(«) of the process Y (t) is defined as before:
ola) = ra— A(1 — b(a)).

Intermediate goal: evaluate §_(u_, uy, ) and 64 (u—, us, ).
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Scale functions, ctd.

Define scale function W) (u) as the function whose Laplace-Stieltjes
transform is

00
f e WP (u) du =
0

(Exists; see Kyprianou book.)

pla) =B

Second scale function:
ZB(u) =1+ ﬂf W) (x) dx.
0

Swapping order of integrals:

Q0 1 00 o0
J e ZB(u)ydu ==+ e W (x) du dx
0 o 0 Jx
1 8 1

a  apla)-p
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Scale functions, ctd.

In Chapter 1 we characterized distribution of Y (Tj) in terms of the
Laplace exponent p(«) and its inverse ¢(3). First lemma: alternative
representation.

For any u> 0 and 8 > 0,

P(Y(Ts) > u) = ZB) (u) — w—W(B)(u).

Proof. Verify that transform (with respect to u, that is) coincides with
m(a, B). This requires an easy calculation (Check!).
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Scale functions, ctd.
Second lemma: useful alternative expressions for the target quantities.

Lemma

|
o |

Foranyu_ >0, uy >0, and 8 >

5_(u-, uy, B) = E(e™P7) Lo (u_) < v(us)}),
54 (usy g, B) = E(e™P7) 1{r(u,) < o(u-)}).

Proof. We establish claim for §_(u_, uy,3); other claim analogous.
Applying integration by parts,

5_(u_us, jﬁe FP(o(u-) < to(us) < 7(uy)) dt

= JO e P'P(o(u) € dt,o(u) < 7(uy))

=E(e ) 1{o(u_) < 7(us)}).



Scale functions, ctd.

Third lemma: translation in terms of scale functions for infinite horizon
case.

Lemma

Assume E Y (1) < 0, or equivalently ©'(0) > 0. Then, for any u_ > 0,
uy = 0,

WO (uy)

5_(u_, U+,O) = m
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Scale functions, ctd.

Proof. Consider identity

B(V(0) < uy) = P(¥(0) < uy + u_) Plo(u_) < r(uy)),

where we use Y (o(u-)) = —u_ & strong Markov property. Due to
E Y(1) <0 both P(Y(o0) < uy) and P(Y () < uy + u_) are positive
so that

P(Y(0) < uy)
P(Y () <uy +u)

(S_(U_,U+,O) =

Hence: left to prove that P(Y(o0) < u) is proportional to W© (u).
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Scale functions, ctd.

The proportionality we show by establishing that transforms of both
objects are proportional. Indeed, by Corollary 1.1,

JOO e P(Y () < u)du = 1IFD(\_/(OO) =0)+ . foo e"“P(Y(o0) € du)
0+ a @ Jo+

JOO e~V P( () € ) = 210

which is proportional to 1/p(), i.e., transform of W(©) (u).
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Scale functions, ctd.

Forany u_ >0, uy =0and g >0,

W (uy)

o (u_,uy,pB) = WO (i, + )
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Scale functions, ctd.

Proof. Study process Y(t), for 8 > 0, under exponential
change-of-measure with ‘twist’ —(8) < 0: calling alternative probability
model Q, Laplace exponent under Q is

pola) = wla+¥(B) —e((B)) = pla+¥(B)) — B

New process has negative mean: ¢'(¢(0)) > 0, in combination with
(i) the right inverse ¢ (f) is increasing in 8 and (ii) ¢(«) is increasing for
a > P(B), yields

EqY(1) = —¢(0) = —¢/((8)) < 0.

See Figure.
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Scale functions, ctd.

w(a) (o)

P(B) P(0) ¥(B)

Figure: Functions ¢(a) with ¢’(0) > 0 (left panel) and () with ¢'(0) <0
(right panel). In former case 9(8) > 1(0) = 0, whereas in latter case
¥(B) > ¥(0) > 0. Observe that in both cases ¢’ (¢(8)) > 0.
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Scale functions, ctd.
Likelihood ratio connecting P and Q:
dP(Y(t) = x) _ Bt x.
dQ(Y(t) = x) '
to see this, observe that

foo e Q(Y(t) € dx) = Ege @Y = Ee~(a+v(B)Y (-5t

—Q0

0
= e—ﬂff e~ (VIO P(Y (1) e dx).

—0
Third Lemma, which we can apply because EgY(1) < 0:
QY () <uy)
Q(Y(0) < uy +u-)
On the other hand, by applying likelihood ratio and Second Lemma,
Qo(u-) < 7(us)) = E(e #7001 o(u_) < 7(uy)})
= eVP-6_(u_,uy,pB).

Qo(u-) s 7(uy)) =




Scale functions, ctd.

Combining above findings,

u_,u — e ¥(B) u- Q(Y(0) < uy)
e QY () < uy + )
B e (B) uy Q(f/( ) < uy)

T AP QY () < uy + 0

Left to prove: e¥® ¥ Q(Y(w0) < u) is proportional to W) (u). Idea:
show that their transforms match up to multiplicative constant:

* —au (B u \/ W) du = (p(l@(o) _ 80/(1/1(5))
Jy, e i <u = s < S

which is proportional to 1/(¢(a) — 3). Stated follows by recalling that
1/(p(c) — B) is transform of W) (u).
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Scale functions, ctd.

Forany u_ >0, uy =0and g >0,

WP (uy)

5o uy, B) = ZB)(uy) = ZO(u, + u_)m'
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Scale functions, ctd.
Proof. We first decompose
8 (umyuy, B) =E(e 70 Lr(uy) < 0}) —
E(e ) 1{o(u) < 7(uy)}).

First term, by Equation (1.2) and equivalence of {r(u) < t} and
{Y(t) > u},

E(e 77+) 1{r(uy) < o0}) = P(Ts > 7(uy)) = P(Y(Tp) > uy),

which we can evaluate in terms of scale functions relying on First Lemma.
In addition, using the strong Markov property,

E(e"gT(”*) Ho(u-) < 7(us)})
Po(u_) < 7(uy) < Tp)
=Plo(u=) < Tg,o(u_) < 7(us))P(r(us + u_) < Tg).
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Scale functions, ctd.

Combining above findings:
Sy(u_yur,B) =P(Y(Ts) > uy) —6_(u_,ur,B)P(Y(Ts) > uy +u_).

Using previous Theorem and First Lemma, this yields desired expression.
Here use that (Check!)

B(Y(T5) > us) = 6_(u_, us, B)B(Y(Tp) > us + u_)

2B () — B -
W(ﬁ)(u+)
W) (ug + u-)

(Z(ﬁ)(U+ tu)— w(ﬁB)W(f’)(u+ + u_)> :

which equals right-hand side of claimed equality.
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Decomposition

Goal: evaluating p(u, v, Tg), i.e., probability of Y, (t) exceeding level u
before time Tz. We do so working with a decomposition.

Key quantity is first passage time
T(w) :=inf{t = 0:Y,(t) = w|Y,(0) =0}.

In addition, for y € (v, u),

Ty (u) == inf{t = 0: Y, (t) = u| Y,(0) =y},
oy(v) :=inf{t =0:Y,(t) <v]|Y,(0) =y}
Note that in definition of o, (v) we could have replaced ‘< v' by ‘= v/

(Why?).
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Decomposition, ctd.

Crucial role is played by overshoot over level v, jointly with indicator
function of the event of Y, (t) exceeding v before time Tg. Introduce

k(v,t,y) = E(e*V(Yv(T("))*")l{T(v) < t}).

Later: evaluate double transform of k(v, t,7), or, equivalently,

a0

k(a, B,7) = f e k(v, Tg,v)dv.
0

This, applying Laplace inversion, allows evaluation of
P(Yy(r(v)) —vedy,7(v) < Tp);

in the sequel denote this density by h(v, y, 3).
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Decomposition, ctd.
Definition of g(u, v, t) and G(u, v, t), with v < u, to be evaluated later.

G(u, v, t): probability that starting in v, first a level above v is attained
(before t), and then v is reached again (before t), before u is exceeded
(also before t). Formally, G(u, v, t) := P(&(u,v,t)|Y,(0) = v), with

si:=inf{s >0:Y,(s) > v} <
E(u,v,t) =% sy:=inf{s>s1:Y,(s)=v
Vse(s1,%): Yo(s) <u

<

g(u, v, t): probability that starting in v, level u is exceeded (before t),
before v is reached from above (also before t). Formally,
q(u,v,t) :=P(F(u,v,t)] Y,(0) = 0), with

si:=inf{s >0:Y,(s) > v} <t,
F(u,v,t):=X sp:=inf{s=s1:Y,(s)=u}<t, ¢;
Vs € [s1,5]: Yo(s) > v

also includes case in which at first time v is exceeded, u is exceeded too.
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Decomposition, ctd.

Considering target probability p(u, v, Tg), there are three (disjoint) ways
to exceed u, starting with Y, (0) = 0.
1. Level v can be exceeded (before Tg) with overshoot that is larger
than u — v. This leads to contribution

o]

pr(u v, Ts) = j h(v,y. B) dy.

u—v

2. Level v is exceeded with overshoot that lies between 0 and u — v,
but from that point on u is exceeded before v is reached (and all
these events before Tg). This corresponds to contribution

u—v
paluv, T)i= | hlv,,8) 6w v, ) dy,
0

with 04, (u, v, ) := P(1,(u) < min{o,(v), Tg}) evaluated later.
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Decomposition, ctd.

3. Level v can be exceeded with overshoot that lies between 0 and
u — v, but from that point on v is reached before u is exceeded (and
all these events occur before Tg). From that point on, geometric
number of attempts of exceeding u starting at level v; in each of
these attempts, the process first has to exceed level v again, and
after that u should be exceeded before returning to v (all these
events occurring before Tg). This leads to contribution

p3(u, v, Tp) ::fo_ h(v,y,B)6_,(u,v,B)d Z (u,v, Ts) (G(u, v, Tp))"
(U v Tﬂ) u—v
]-_(UVTB)J h(Va}’,ﬁ) 5_,y(u, V,ﬁ) d_y7

with 6_ ,(u, v, ) := P(o,(v) < min{r,(u), Tg}) evaluated later.
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Decomposition, ctd.

Figure: Process Y,(t). Top panel: Scenario 1, middle panel: Scenario 2,
bottom panel: Scenario 3 (black dots indicating start of new attempt to exceed
level u starting at level v).
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Decomposition, ctd.

For any u> 0, v e (0,u), and 8 > 0,

p(U, v, Tﬂ) = p1(U, v, Tﬂ) + ,DQ(U, v, Tﬁ) + p3(U, v, Tﬁ)
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Computation of auxiliary objects

We conclude by evaluating all objects needed in decomposition of
Theorem:

o density h(y, v, 3) (through the associated transform x(a, 3,7)),
o probabilities 6_ ,(u, v, 3) and 6 ,(u, v, B),
o probabilities q(u, v, Tg) and g(u, v, Tg).
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Computation of auxiliary objects, ctd.

Evaluation of k(a, 8,7): as in Exercise 1.2.
With p_(a) := r_a— A_(1 — b_(«a)), and ©_(B) right inverse of p_(«):

A (b (B)-b(y) b(a)—b ()
—5( v )

wlenB) = o ) " —a
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Computation of auxiliary objects, ctd.

Evaluation of 6_ , (u, v, 3) and 0, ,(u,v,3): use scale functions.

Using results that we derived,

Wi (u—y)
i, , - :
A=, )

with WJ(r (u) such that, with ¢ () := rpa — A4 (1 — by (@),

. ) 1
e “WY"(u)du = ————.
L * () () =B
Also,
(ﬂ)(u
%)
Oy y(u,v,p =Z(B)(u—y)—Z(ﬁ)(u—v)
+y( ) + + W_(f)(u v)

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Computation of auxiliary objects, ctd.

Evaluation of q(u, v, Tg) and g(u, v, Tg): with 6_ ,(u,v,3) and
04,y (u, v, ) as given above, it is seen that (Check!)

0

h(0+,y, Tg) 0+ y(u,v,B)dy + J h(0+,y, Tg) dy

u—v

q(U, v, Tﬁ) = J
0
and .
G(u,v, Tg) = J- h(0+,y, Tg) 6— ,(u, v, ) dy.
0

Density h(0+,y, Tg) can be determined as pointed out earlier.
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CHAPTER VI: LEVEL-DEPENDENT DYNAMICS
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Level-dependent dynamics: main ideas

This chapter: behavior of net cumulative claim process depends on
current reserve level ‘in a continuous manner’.

We consider CL model, but now with claim arrival rate and premium rate
equal to A\(x) and r(x), respectively, when the surplus level is x.

Assume: r(0) = 0 and r(x) > 0 for all x > 0.
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Level-dependent dynamics: main ideas, ctd.
Reserve level process obeys integral equation:

t N(t)

Xy(t) =u +f r(Xu(s)) ds — Z Bi,
i=1

0

where claim arrival process N(t) is such that Poisson arrival rate at time
tis A(Xy(t)).

More precisely, as At | 0,

P(N(t + At) — N(t) = 1| Xy(s),s € [0, t]) = AM(Xu(t)) At + o(At),
and
P(N(t + At) — N(t) = 0| Xu(s),s € [0, t]) = 1 — A(X,(t)) At + o(At),

where probability of two or more arrivals in interval of length At is o(At).
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Level-dependent dynamics: main ideas, ctd.

Objective: analysis of all-time ruin probability p(u), i.e., probability of
Xu(t) ever dropping below 0.

For general functions A(x) and r(x) evaluation of time-dependent ruin
probability p(u, t) is beyond reach, except in special cases.
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Level-dependent premium rate: duality

First assume A(x) = A.

Construct dual queueing process Q(s), for s € [0, t], as follows:

o Apply time reversal on the interval [0, t]. This concretely means
that the process’ jumps are now positive.

o Apply reflection at zero to prevent the process from attaining
negative values.

o Start the queue with a zero workload: Q(0) = 0.
Workload dynamics are governed by

N(t)

Q(t) = 2 B; —L r(Q(s)) ds.
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Level-dependent premium rate: duality

Claim: finite-time ruin probability p(u, t) equals probability of workload
level Q(t) exceeding u (where Q(0) = 0); analogously, all-time ruin
probability p(u) equals probability of stationary workload level Q(o0)
exceeding u.

Let 7(u) denote first time that reserve level X, (t) attains a non-positive
value, i.e., the ruin time.

Theorem

For any t > 0, the events {7(u) < t} and {Q(t) > u} coincide. In
particular, the events {7(u) < o0} and {Q() > u} coincide.
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Level-dependent premium rate: duality, ctd.

, ! )
/" a Al
s /1 /1
Xu(t) S s /S Q(t)
| / 1 7
/ 1 / 1 /
/ A 1 / :
/ /’V \ / \

U= - v X
s |
v |//

u=u + v
! t P

Figure: Left panel: reserve level process X, (t) for initial surplus u; (solid lines)
and for initial level u> (dashed lines). Right panel: constructed workload
process Q(t), with time-reversed arrival process.
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Level-dependent premium rate: duality, ctd.

Proof. Relies on a sample-path comparison technique.

Let there be N claims in the reserve level process X, (t) between 0 and t
(which is Poisson distributed with parameter At); call these times t; up
to ty. Because of time reversal, jumps in dual queueing process Q(t)
happen at times t} :=t — ty_p41, for n=1,..., N.

Claims By, ..., By in reserve level process X, (t) correspond to upward
jumps in the queueing process Q(t) of size B} = By_py1-

Let deterministic function x,(s) solve x/,(s) = r(x,(s)) under x,(0) = v.
Evidently, there is monotonicity as function of initial surplus level: if
Uy < uz, then xy, (s) < xy,(5).

Proof of equivalence of {7(u) < t} and {Q(t) > u}: two inclusions.
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Level-dependent premium rate: duality, ctd.

o First consider scenario that Q(t) > u, corresponding to path of
Xy, (t) (i.e., solid graph in left panel). Due to monotonicity,

Q(ty—) = xq(r)(t1) — B1 > xu(t1) — B1 = Xy(t1).

If Q(ty—) =0, then X,(t1) <0, so that indeed 7(u) < t. If
Q(ty—) > 0, iterate above argument to conclude that
Qlth_1) > Xult2):

Q(ty—1—) = xq(iz—)(t2 — t1) — B>
> XXu(tl)(t2 —t1) — By = Xy(ta).

Again distinguish Q(ty_,;—) = 0 and Q(ty_;—) > 0. Former case:
X,(t2) < 0 and hence 7(u) < t.

Continuing along these lines, due to Q(tf—) = 0, this procedure will
eventually yield t such that Q(t;—) = 0. Hence, for this j we have
that X, (tn—j11) < 0, so that 7(u) < t, as desired.
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Level-dependent premium rate: duality, ctd.

o Conversely, now suppose that Q(t) < u, corresponding to path of
Xy, (t) (i.e., dashed graph in left panel). Then, using monotonicity
once more,

Q(ty—) = xq(p)(t1) — Br < xu(t1) — B1 = Xy (t1).

This relation can be iterated in same way as before, to obtain
Q(tf—) < Xu(thijl)v for all je {1, ey N}

Together with Q(s) = 0, this implies that at all claim arrivals reserve
level process is non-negative. As ruin can only occur at claim
arrivals, this means that no ruin occurs in [0, t), i.e., that 7(u) > t.
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Level-dependent premium rate: distribution

Justified by duality, describe distribution of stationary workload Q(0).
f(y): density of stationary workload. Observe: equals —p’(y) by virtue of
duality. F(0): probability that stationary workload is 0.

Fory > 0,
y
ry)Fly) = Af P(B > y — 2)f(2) dz + AF(0)P(B > y).
0+

Proof. Left-hand side can be interpreted as probability flux through the
level y from above, and right-hand side as probability flux through y
from below.
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Level-dependent premium rate: distribution, ctd.

Next challenge: compute density f(y) from integral equation (Volterra
integral equation of second kind). We restrict ourselves to case F(0) > 0.

Introduce g(y) := AP(B > y) for y > 0 and kernel
K(y,z):=g(y — z)/r(y) for 0 < z < y < c0. We obtain alternative
representation

Yy

f(y) = K(y,0)F(0) + L K(y,z)f(z) dz.

Define the kernels K, (x, y) iteratively by Ki(x,y) := K(x,y) and

Kn(Xay) = JX Kn—l(X7 Z) K(27Y) dz

for0<y<x<owandne{23,...}
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Level-dependent premium rate: distribution, ctd.

Solve iteratively:

fy)

Il

X
<
o
pu
L
+

S—
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Level-dependent premium rate: distribution, ctd.

Convergence of sum follows from following Lemma, implying that
K*(x,y) := Y07, Ku(x,y) is well-defined.
First introduce, for 0 < y < x < o0,

X

R(x,y) :—L )

Represents time to go from level x to level y < x in absence of arrivals.

Lemma

ForO<y<x<oandne{l,2,...},

AR(x,y)" 1

Knloy) < To5m—Dr
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Level-dependent premium rate: distribution, ctd.

Proof. By induction. For n =1 stated follows from g(x — y) < A: we
thus have that K(x,y) < A/r(x).
Now suppose claim holds for n — 1. Then, using induction hypothesis,

x X A"IR(x, 2)" % A
Kn(X,y) = J;/ Kn_]_(X,Z) K(Z,y) dZ < L W @ dZ.
Observing that
d 1
ER(X,Z) = —@,

we have that RHS equals

[ A"R(x, z)”l]x _ A"R(x,y)"1
r)(n=14|,_ r(x)(n—1)! ’

as desired.
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Level-dependent premium rate: distribution, ctd.

We find stationary workload density (equals minus derivative of ruin
probability in associated ruin model, as pointed out earlier).

It uses

Q0
=1 +J K*(y,0) dy.
0+

Theorem
If § < oo, then F(0) = 1/¢ and, fory > 0,

Case of exponentially distributed claims can be done explicitly; see last
part of Section 6.2.
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Level-dependent premium rate and claim arrival rate

Now: premium rate and claim arrival rate are level-dependent. Goal:
integro-differential equation for survival probability p(u) = 1 — p(u).

In this context duality does not apply (see Remark 6.2). Therefore:
Kolmogorov forward equation method, i.e., Method 4 of Section 1.6.
Looking ahead an infinitesimal amount of time At,

p(u) = (1-A(u)At) ﬁ(u—i—r(u)At)—i—)\(u)AtJ:_ p(u—z)P(B € dz)+o(At).

Bring p(u + r(u)At) to LHS and divide by At. After At | 0,

r(u)p'(u) = Au) p(u) — /\(U)J plu—z)P(B € dz)

= A(u) p(u) + )\(u)JO p(u—z)dP(B > z).

Then apply integration by parts.



Level-dependent premium rate: distribution, ctd.

Write f(u) := p'(u).

For u >0,

r(u) f(u) = A(u) L: P(B>u—2z)f(z)dz+ A(u) p(0)P(B > u).
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Level-dependent premium rate: distribution, ctd.

Introduce ((u) := Ar(u)/A(u).

Equality in Theorem becomes
u

C(u) F(u) = AL P(B > u— 2) f(z) dz + A p(0) P(B > u).

Has exact same structure as equality for A(x) = A. Hence can again be
solved by same type of iteration.
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Specific level-dependent model

Variant of CL model, where high surplus leads to increase of claim arrival
rate.

Model:
o Let Aj, Ay, ... be a sequence of i.i.d. exp(A) rvs.

o When surplus level right after i-th claim arrival is y, then next
inter-claim time equals max{0, A; — cy}, where c is positive constant.

Mechanism is such that when surplus level is large, there is a cascade of
claims, so that reserve level is pulled down, whereas if surplus level is
small, the model effectively behaves as conventional CL model.

Suggests that p(u) = 1, as surplus process cannot drift to oo.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Specific level-dependent model

As before: objective is to evaluate ruin probability over exponentially
distributed horizon, i.e., p(u, Tg), through its Laplace transform:

o0
(o, B) = J e *p(u, Tg) du.

0
Main idea: by conditioning on first claim arrival, we can express 7(a, 3)
in itself, but evaluated in different arguments.

Two scenarios are relevant:

o If exponentially distributed random variable with parameter A, say A,
is smaller than cu, then next claim arrives instantly. This could lead
to instantaneous ruin if its size is larger than u, and alternatively can
bring the surplus process down to level between 0 and u.

o A can be larger than cu. Then claim arrives after A — cu time units.
Again, this can lead to either immediate ruin, or to surplus level
between 0 and u (if time horizon T3 has not been exceeded).
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Specific level-dependent model, ctd.

Reasoning of the preceding slide entails

p(uv Tﬁ) = Pl(U, TB) + p2(ua Tﬂ)
Here p1(u, Tg) corresponds to first scenario, i.e.,

u Q0

plu—v,Ts)P(Bedv)+ f P(Be dv)),

u

puu To) = (1= (|

0

and py(u, Tg) to second scenario, i.e.,

0

pa(u, Tg) = f Ae MP(Tg > s — cu)
cu

0

<Ju+r(s—cu) plu+r(s—cu)—v, Tg)P(Bedv)+ f

P(Be dv)) ds.
0 u+r(s—cu)
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Specific level-dependent model, ctd.
wi(a, B): Laplace transform of p;(-, Tg), for i = 1,2.
Focusing on 71 (a, 8), the integral
Q0 u
L e (1 - e*’\‘:”)f0 p(u—v, Tg)P(B € dv) du,

after swapping the order of integrals and recognizing Laplace transform
of a convolution, equals

b(a)m(a, B) — bla + Ae)m(a + Ac, B).

Along similar lines,

f e ou(1 — e—M“)J P(B e dv)du = L= 2@) 1= bla+ )
0 u «a o+ Ac

Conclude: 71(a, B) is sum of these expressions.
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Specific level-dependent model, ctd.

Now consider evaluation of m(a, §). We are to calculate two triple
integrals, using standard techniques.

First integral equals:

>\<b((A+ﬂ)/f) m(A+B)/r, ) — bla+Ac)w (a+/\c,ﬂ)>
r a+Arc—(A+B)/r '

Second integral equals

A (l—b(a—l—)\c) _ b((A+B)/r) = b(a+)\c))
A+ '

a+ A a+Ac—(A+8)/r

Conclude: 7o (a, B) is sum of these expressions.
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Specific level-dependent model, ctd.

We found, for easily determined functions F(a, 3), G(«, 8) and H(a, B),
a relation of the form

m(a, B) = F(o, B) m(a + Ac, B) + G, B) + H(a, B) w((A + B)/r, B).

One can subsequently express w(a 4+ Ac, 8) in terms of w(a + 2Ac, B),
etc. Repeatedly iterating this relation, we obtain an expression for
m(a, B).

In this expression k(r) := w((A + B)/r, B) (with /5 kept fixed) appears.
Expression for k(r) is derived by inserting o = a(r) := (A + 8)/r, and
solving the resulting linear equation in x(r).
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Specific level-dependent model, ctd.
After some algebra (Exercise 6.4), we find following result. We denote

aj = a+ jAic and aj(r) := a(r) + jc.

Forany a > 0 and 8 > 0,
(e, B) = G(a, B) + H(ev, B) r(r)

+ 23 (6lp ) + Hiay s [ e )

where, defining the empty product as 1,

30 G(e(r). ) ITio Flei(r), B)

w(r) = 1— 324 Hoi(n), ) TTiZ Flai(r), 8)

Michel Mandjes (KdVI-UvA)
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Multivariate ruin: main ideas

Most of existing ruin theory: primary focus is on univariate setting
featuring single reserve process. In practice, however, position of
insurance firm is often described by multiple, typically correlated, reserve
processes.

Multivariate ruin is hard — can be dealt with explicitly only under
additional assumptions.

Concretely, ordering between individual net cumulative claim processes,
say Y (t) = (Yi(t),..., Yq(t)) for some d € N, needs to be imposed.

This chapter: analysis of multivariate ruin under ordering condition. In
addition, we derive so-called multivariate Gerber-Shiu metrics (including
ruin times, undershoots, and overshoots).
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Bivariate case: model

Consider two net cumulative claim processes, say Yi(t) and Ya(t), in
which claims arrive simultaneously, according to Poisson process with
rate A.

These claims By, B,, ... are 2-dimensional, componentwise non-negative
i.i.d. random vectors, distributed as generic random vector B. Their

entries are ordered.
P(BM > B®) =1,

where B() is generic claim size corresponding to Y;(t).
The premium rate is r for both individual net cumulative claim processes.
Bivariate Laplace exponent is therefore given by

pla) = IogEe*aTY(l) =r1Ta—\1-b(a)),

with b(a) bivariate LST corresponding to random vector B.
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Bivariate case: model, ctd.

Y]_(T.‘)

Ya(t)

Figure: Net cumulative claim processes Y1(t) and Y2(t). Observe that
processes are ordered; all jumps in Y1(t) correspond to simultaneous jumps of
at most that size (possibly zero) in Ya(t).
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Bivariate case: model, ctd.

We assumed per-component claim size distributions to be ordered almost
surely, whereas premium rates of components are assumed to coincide.
We can, however, generalize this (Remark 7.1).

As it turns out, we can work with distinct premium rates r; and rp, but
then we have to impose

P(BY/n = BP/n) =1.

(Check!)
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Bivariate case: key objects

Approach relies on Method 4, discussed in Section 1.6:
we set up Kolmogorov forward equations for bivariate queueing process
Q(t) (with Q(0) = 0) that is dual of Y(t).

Define
7i(u) == inf{t = 0: Y;(t) = u},

fori=1,2.
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Bivariate case: key objects, ctd.

Following lemma shows that ruin in the bivariate risk model (with initial
capitals u; and u;) can be expressed in terms of exceedance probabilities
(over levels u; and wy) in bivariate dual queueing model.

It justifies that in the sequel we focus on queueing model only.

Lemma

For any t > 0,

o the events {11 (u1) < t,72(u2) < t} and {Q1(t) > u1, Q2(t) > ua}
coincide.

o the events {T1(u1) > t,72(up) > t} and {Q1(t) < u1, Q2(t) < wa}
coincide.

o the events {Tl(ul) < t,T2(U2) > t} and {Ql(t) > uy, Qz(t) < U2}
coincide.

o the events {T1(u1) > t,72(tp) < t} and {Q1(t) < vy, Qa(t) > ua}
coincide.
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Bivariate case: key objects, ctd.

Proof. First observe that, based on Theorem 6.1, events {7;(uv) < t} and
{Qi(t) > u} coincide, for i = 1,2. This directly implies first and second
claim. Third claim follows from

{m(wn) < t,m2(w) >t} = {m(n) < f}\{Tl(ul) < t,mo(u) <t

in combination with first claim and fact that events {1 (v) < t} and
{Q1(t) > u} coincide. Fourth claim follows by symmetry.
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Bivariate case: key objects, ctd.

Our objective is to characterize
ke(o) := Ee Q)

We settle for this object evaluated at exponentially distributed time Tg,
for some killing rate 3.

Observe: both individual queues are of M/G/1 type, and can therefore be
analyzed relying on techniques explained in Chapter 1, but challenge lies
in revealing joint workload distribution.
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Bivariate case: key objects, ctd.

Queueing dynamics in interior of positive quadrant differ from those at
boundaries. We therefore also introduce

Fe(a) = Ee~ Q01{Q(t) > 0};
the (strict) inequality Q(t) > 0 is to be understood componentwise.

Immediate: Q1(t) = Q(t) almost surely. Hence,
D) = Ee ' QO1{Q(t) > 0, Qo(t) = 0}
= Ee ™ @W1{Qu(t) > 0, Q2(t) =0}
and
g i=Ee™ Q01{Qy(t) = Qu(t) = 0}
= P(Qu(t) = Q(t) = 0) = P(Qs(t) = 0).
Section 1.6: with () right-inverse of ¢(ay,0), for > 0,

a7 = B
T8 g (B)
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Bivariate case: key objects, ctd.

Above transforms translate into transforms related to ruin probabilities,
as follows. Define bivariate time-dependent ruin probability:

p(u,t) :=P(r (1) < t,m2(w2) < 1),

and p;(u, t) is time-dependent ruin probability of firm i, for i = 1,2. Also

J J U T/g) du1 dUQ,

mi(a, B) = J e *pi(u, Tg) du.

0
As in Remark 1.2,
k1s(a) =1 —aym(ar, f) — axma(az, f) + o m(a, B).

Chapter 1: expressions for m;(a, 8) for i = 1,2. Hence: it suffices to find
k1, (a) to also find m(a, 3).
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Bivariate case: Kolomogorov equations
As in Section 1.6, up to o(At)-terms,

- —(1
Kerat(a) + HE.BAt(al) + Gerae = Keyar(a)

= Re(@) (1 — MAt + AAt b(a) + r1TaAt) +
£ (1) (1 — AAE + AAE b(@) + rarAt) +
e (1 — AAt + AAt b(a)).
Recalling definition of ¢(a), we obtain following differential equation:

Lemma

Foranya >0 and t >0,

0 _ 0 _q) 0
atﬁt(a) s () + ot
_(1)

= p(a) Fe(a) + (p(a) — raz) &y (a1) + (p(@) — riTa) g;.
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Bivariate case: derivation of transform.

Next step: transforms at exponentially distributed time Tg.
Multiply full differential equation by density Se—?t, and integrate over
t > 0. By Equation (1.7), and realizing that

_ _(1

Fo(a) = Ry (01) =0,

we find

8("r.(a) + &Y (a1) + a7, — 1)
=(1)

= p(a) Kty (a) + (gp(a) — ra2) Rr, (o1) + (<p(a) — rlTa) qr,-
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Bivariate case: derivation of transform, ctd.

After rearranging:

o (ele) —ree = B) TN + (p(e) 1T~ B) ar, + B

Qi
o) — B ’

so that we end up with

rao F;(Tlﬂ) (1) + r1Ta qrs — 0
pla) = B

k1y(a) =

We lack, however, expression for

R7)(a1) = Ee @R 1{Q(Ts) > 0, Q2(Tp) = 0}
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Bivariate case: derivation of transform, ctd.

Strategy: any zero of denominator (with positive real part) is necessarily
also a zero of the numerator. Rewrite p(a) — 8 =0 as

M(a) = c(a) ==X —r1Ta+ 8.

Fixing ai; with Re a1 > 0 and 3, due to lemma below we can identify
unique a = waz(azg, B) such that p(a) — 3 = 0 while k7, (cx) should be
finite. Proof relies on Rouché’s theorem.

Lemma

For every ay with Rea; > 0 and 8 > 0, there exists a unique

ap = wy(ay, B) with Rews(as, 8) > Re (—ay) that satisfies

Ab(a) = c(ex). For any 3 > 0, the function ay — wa (a1, B) is analytic
in Reay > 0.
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Bivariate case: derivation of transform, ctd.

By Lemma, we obtain by equating numerator to 0:

rwa(a, B) R(Tlﬁ)((h) + (Oél + W?(alvﬁ))

(recalling expression for gr,). Equivalently,

(1) _ 153 B aq 1) B
R, () rwa(az, B) (rwz(al,ﬂ)+f D1(6)

This can now be inserted into k1, (c):

k7, () = 1 Poz
& p(a) — B\ w21, B)

<w20é1042 N az) B, (a1 + )8 5>~

Y1(B) Y1(B)
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Bivariate case: derivation of transform, ctd.

After some rearranging:

Theorem

For any o > 0 and 8 > 0,

k. (a) = a1 —P1(B) B wo(ow,B) —
e pla) =B P1(B)  walar,B)

Check: a = 0 yields 1, as desired.
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Higher dimensional case

Next goal: recursively solve the case of d € {3,4,...} net cumulative
claim processes:

o Claims arrive simultaneously in all d dimensions, according to
Poisson process with rate A.

o Claims By, B,, ... are d-dimensional, componentwise non-negative
i.i.d. random vectors, distributed as generic random vector B.
Following almost-sure ordering applies:

P(BY >B® >...> B¥) = 1.

o Premium rate is, for all net cumulative claim processes, equal to r.
Define p(a) as before, with b(a) the d-dimensional LST of B.
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Higher dimensional case

Objective: find transform of random vector Q(t), with Q(0) = 0:
ke(o) :=Ee Q)
evaluated at exponentially distributed time Tg.

Central objects: with xpjj := (x1,...,x) forie {1,...,d},

A () == Ee QO1{Qpy(t) > 0, Qia(t) = ... = Qu(t) = 0}
— Ee 0O 1{Qy(t) > 0, Qya(t) = ... = Qu(t) = 0}
= }Eefag] o[i](t)l{o[;](t) > 0, Q,'+1(t) = 0},

where last equality is due to ordering Q1(t) = ... = Qq(t).
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Higher dimensional case, ctd.

From bivariate case, we know
AP (o)) = Ee 0T 1{Qu(Ts) > 0, Qo Ts) = 0}
= Ee 2 ®T)1{Q(Ts) > 0, Qx(T3) = 0}.

In addition, in Chapter 1 we found

R(T();f)(a[O]) =qr, = P(Q1(Tp) = = Qu(T) = 0) = P(Q1(Tp) = 0).
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Higher dimensional case, ctd.

Following same procedure as in bivariate case, with each all-ones vector 1
used in the following expression having appropriate dimension,

3y (a1 ag) RY (@) - 8
wrae) = o) -5 |

Idea: recursively identify the unknown functions in numerator: supposing
that expressions for

=(1) (d=2)

AP (e, B (), - B (opa—2y)

are available, we point out how to determine /%(T‘;_l)(a[d,l]).
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Higher dimensional case, ctd.

Fixing afg—1] and j3, using same argumentation as before, we can find a
unique g (in a certain region) such that p(a) — 8 = 0; denote this by
wa(apg—1y; B).-

Any such root of denominator should be root of numerator as well. By
some algebra recursive relation

- 1T 1T :
_(d—1) _ [d—1] [ _(i)
Rr, (ag-1) = Z < ) +1> AT

rwd

follows.
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Higher dimensional case, ctd.

By some additional calculus following result is derived. Here
wj(aj—1}, B) is solution for a; in equation p(a;,0) — 3 = 0 (with
vector 0 being of dimension d — j), for given values of a[;_17 and f3.

For any &« > 0 and 8 > 0,

d
— iy

IﬂiTﬁ(a): ( ) 1 ﬂ 1_[ wj a[J 1 ﬁ)

j=2
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Higher dimensional case, ctd.
There is alternative way to identify transform; see last part of Section 7.3.
Also yields explicit expression for R(T'; (aqip). With

vi(B) By wilag1B) —a

Zi(e, B) == — rw,+1(a[ ,B) ¥1(B) =2 wj(ej-11, B)

we find:

Corollary

For any ajy = 0 and 8 > 0,
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Tandem system

Model: tandem queueing network fed by a compound Poisson process

Y (t) with arrival rate A > 0. The i.i.d. service requirements By, Ba, . ..
are distributed as rv B with LST b(«).

Consider d queues in series, with (constant) service rates ¢y, ..., ¢4 that
are non-increasing (i.e., c1 = @ = -+ = ¢4).

Output of i-th queue is continuously fed into (i + 1)-st queue, for
i=1,...,d—1; no external input arrives.

Framework is seemingly different from the one discussed earlier, but joint
workload distribution immediately follows from earlier results.
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Tandem system, ctd.

Idea: above tandem network fits into our setup, as follows.

Qi(t): workload in the i-th queue, with i = 1,... d, at time t > 0;
assume system starts empty at time 0. Recall that workload in first
queue obeys

(6= (Y1) ~at) — inf (¥(s) - ars).

Now consider Q(t) + @2(t), which is only affected by service rate ¢,
(not by c1). This means that

Qi(t) + @(t) = (Y(t) — ct) — inf (Y(s) — c29).

se[0,t]

Extending this argument, we obtain forany i =1,...,d,

se[0,t]

QU (t) := 2 Qi(t) = (Y(t) — cit) — inf (Y(s) — ).
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Tandem system, ctd.

Q1(t)
Q2(t) t
Q(2)(t) t

t

Figure: Tandem queueing processes Qi (t) and Qz(t), and sum Q@ (t). Qi(t)
is M/G/1 queue with drain rate ¢; and Q@ (t) is M/G/1 queue with drain rate
c2. While not empty, Q2(t) increases at rate ¢; — ¢z and decreases at rate c.
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Tandem system, ctd.

Observe Q') (t)/c; can be seen as workload in queue fed by compound
Poisson process with arrival rate A and i.i.d. service requirements
distributed as B/c;, emptied at a unit rate. But because

P(B/cg = B/cg—1 == B/ar) =1,
we can apply earlier results to describe joint distribution of these d

workloads (with indices 1,...,d being swapped), and hence also of
original d workloads Q1(t),..., Qq(t). See Theorem 7.3.
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Gerber-Shiu metrics

So far: focus on joint ruin probability. Now: joint distribution of ruin
times of both insurance firms, together with corresponding undershoots
and overshoots, i.e., so-called (multivariate) Gerber-Shiu metrics.

Here we do bivariate case, but can be extended to higher dimensions.

Abbreviate u = (u1, u2)T € [0,0)2, Y (t) = (Yi(t), Ya(t))T,
7(u) = (11(uv1), 72(12)) ", and

_{ Ya(ri(m)-) — ( nn(w) .
vewo= (Ynms) ) vewr= (G0 )

here 7;(u;) is ruin time corresponding to net cumulative claim process
Yi(t), i.e., smallest t > 0 such that Y;(t) > u;.
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Gerber-Shiu metrics, ctd.
Object of study, for u > 0 and 41,72 = 0, 3 < 0,

P(u) = p(ua5371a72,73)
— (e W)= =Y () ] =Y @) 1 7 () < Ty 1)),

where ~; = (yi1,7i2) " for i =1,2,3.

We analyze p(u) through (nine-fold) transform, where & = 0 and 5 > 0,

m(a) = 7(a, B,71,72,73) f f u, 3,41,72,73) duy dus.

Define univariate counterparts of p(u):

pi(u) = p(u, B,71is V2i, 73i)
= E(e @m0 w1 r () < Tp}).
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Gerber-Shiu metrics, ctd.

Equation our analysis is based on, as At | 0, cf. Exercise 1.2:
p(u) = e*“TlAt A At f f p(u—v)P(Bedv)+
v2=0
AAL J J U1 _ Vl) e 122u2—732(U2—V2) IE”(B c dv)
V2= uz
AAt f J p2(U2 — Vz) 6_721u1_731(u1_vl) P(B € dV) +
vi=uy Jva=0

o O T T
At f J e U= WVIP(B e dv) +
Vi=uy Va=Uz

(1= (A +B)AL) p(u+r 1At)) + o(Al).
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Gerber-Shiu metrics, ctd.

Standard procedure: subtract p(u + r 1At) from both sides, divide by
At, and let At | 0:

0 0 horuz
—r(a—UIp(u) + a—uzp(u)> = A L Jo p(u—v)P(Bedv)+
uy 0
A f J Pl(ul _ Vl) e—’Yzzuz—’Ysz(Uz—Vz) ]P)(B = dV) +
0 uz

0 pu2
4 f f pa(uz — vp) e 1= P(B ¢ d) +
uy JO

ve} o0
A f f e U= (VI P(Be dv) — (1Ty1 + A+ 8) p(u).
uy uz

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Gerber-Shiu metrics, ctd.

Compute transform with respect to u: multiply full equation by e~y
and integrate over non-negative u; and u;. RHS becomes:

(Ab(a) — 1Ty — A = B) (@) + A(a),

where
(@) = m(an) b(o, —y32) — b, az + v22)
o2 + Y22 + Y32
) b(—731, a2) — b(a1 + V21, 2) N
a1+ Y21 + Y31
b(—31, —v32) —b(—731, a2 + Y22) —b(a1 + Y21, —¥32) + b(Q1 + Vo1, 2 + Y22)
(a1 + 721 + 731) (02 + Y22 + 732)

+

7T2(052

LHS becomes:
—r1Tan(a) + rri(az) + ras(ay),
where
© o0
mi(a)i= [ pO.w e du ma) = [ plu.0)edu
0 0
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Gerber-Shiu metrics, ctd.

Foranya >0, 3>0, 71,72 >0, v <0,

r(mi(a2) + m3(a1)) — A((e)
pla) =17y — 8

m(a) =

Left: identification of functions 77 (). Key idea: ordering Yi(t) = Ya(t)
can be used to evaluate 77 («), where crucial role is played by
71(0) < 72(u) for all u > 0. Then, by Lemma:

m5(a) = —m5 (wa(a, 1Ty1 + B)) + %C(a,wz(a, 1Ty + B)).
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Gerber-Shiu metrics, ctd.

Define
W (u) := (Ya(71(u)), Bs(u)T;

BS(u) is claim size in Ya(t) at ruin time 71 (u) corresponding to Yi(t).
We need, with I(u, dw) := 1{m(u) < Tg, W(u) € dw},
p1(u, dw) := E(e—lT'hn(u)—’Yzl(u—Y1(T1(u)—))—’Y:u(u—Y1(T1(u)))]I(u’ dw))

Key identity (use that 71(0) < 72(u) for all u = 0!):
Q0 Q0
p(0,u) = J J p1(0, dw) e V22 (u—witwz)—ys2(u—w1) |
wy=u Jwa=0

u o0
J f p1(0, dw) pa(u — wy).
w3 =—00 Jwa=0

First scenario: Ya(t) first exceeds u at 71(0) (i.e., 71(0) = m2(u)).
Second scenario: u is not yet exceeded by Y>(t) at time 71(0) (i.e.,
71(0) < 72(u)). See book for further explanation.
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Gerber-Shiu metrics, ctd.

Y1(t) Ya(t)

Ya(t) Ya(t)

Figure: Processes Yi(t) and Y>(t) such that Yi(t) = Ya(t) for all t > 0. Left
panels: scenario of (Yl(t) 2(t)) in which 71(0) = 72(u). Right panels:
scenario of (Y1(t), Y2(t)) in which 71(0) < m2(u).



Gerber-Shiu metrics, ctd.
Define, for § € R?,
£(0) := E(e‘”’nn(o)ﬂnY:(T1(0)—)+731Yi(T(O))—‘51YZ(Tl(O))_‘SzB;(O)1{71(0) < Tp}

Then,

o0 o0 o0
71 (o) = L e_o‘”J J ) p1(0, dw) e 22 (u—watwa)—ysa(u—wa) o, 4
wi=u Jwa=

oe] u 0
f e‘“”f f 51(0, dw) pa(u — wa) du
0 w3 =—00 Jwa=0

&2 — 132,722) — €, 122) _
B o+ Y22 + 732 * £l 0)ma(a);

second equality follows by swapping the order of the integrals and
standard calculus.
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Gerber-Shiu metrics, ctd.

To evaluate this expression, we study

Pi(u) = pi(u, )
= E(eflTﬁ’lTl(U)*'Yzl(U*Yl("’l(“)*))*%l(“*Yl(T(U)))*‘STW(U)]_{Tl(u) < Tﬁ})'

Due to £(8) = p1(0, ), if we have access to p;1(0,d), then by inserting
specific values for §; and J>, we can compute all terms.
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Gerber-Shiu metrics, ctd.

As in Exercise 1.2, determine transform of p;(u). First,
T u a0
ﬁl(u) —e ! MmAt+re At(/\AtJ f ]P)(B € dv) ﬁl(U — Vl) e d1ve +
vi=0 Jv=0
0 0 .
)\Atf J P(B e dv) e "2 e vs(u—va) =178 va
vi=u Jva=0

(L—XNAt—BAL) pr(u+ rAt)).

Subtract By (u + r At) from both sides, divide by At, and let At | 0, so
as to obtain integro-differential equation. Taking transforms,

b(—v31,178) — b(ar + 721, 1T5)>
a + 21 + 731 ’

o 1 o
) = ) — T =5 (”’1(0) g

with "
if1(a) = J e” ™ Py (u) du.
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Gerber-Shiu metrics, ctd.

Next step: determine B1(0). Any value of a (with non-negative real part,
that is) for which ¢(a,d1) — 1741 — B equals zero, term between
brackets in %1 («) should equal zero as well.

Using compact notation a® = a°(83,71,01) := ¥1(17~1 + ), with
B — 11(B) denoting the right-inverse of o — (e, d7),

A b(—’)/317 ]'T(s) B b(ao + Y21, 1T5)
51(0,8) = £(8) = 2 .
Pl( ) 5( ) r a® + vo1 + V31

We found all ingredients that allow evaluation of 7{(«).
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Gerber-Shiu metrics, ctd.

Foranya>0,8>0, 71,7 =0, v <0,

r(mg(a2) + m5(01)) — A((e)
pla) =17y — 8

)

(o) =
where
m5(a) = =75 (w2, 171 + B)) + é((a,wz(a, 1Ty +B))

and 73 () as determined above.
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Arrival processes with clustering: main ideas

This chapter: CL model driven by claim arrival process with randomly
fluctuating rate.

Arrival rate is stochastic process, evolving as
o M/G/w queue (to do justice to fluctuating number of clients);
o shot-noise process (to model impact of catastrophic events);

o Hawkes process (to model effect of claims triggering additional
claims).

Objective: determine, in light-tailed context, decay rate of ruin
probability.

The proofs rely either on change-of-measure, or on large deviations
argumentation.
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Arrival processes with clustering: main ideas, ctd.

Exact analysis of p(u) or p(u, Tg) is prohibitively difficult. Therefore:
asymptotics of p(u).

Relevant in analysis: Limiting Laplace exponent ®(a). With Y'(t) net

cumulative claim process,

1
®(a) = lim =logEe®Y(®),

t—oo t
Assume net-profit condition holds:

im 2Y0 __gr0) < 0.

t—00 t

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Arrival processes with clustering: main ideas, ctd.

®(—0): limiting moment generating function.
Other relevant function: Legendre transform I(a). For a € R,

I(a) := sup (6a — d(—0)),
6>0

which is non-negative and convex, and attains its minimal value 0 at
a = —®’(0); see Exercise 8.1.
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Arrival processes with clustering: main ideas, ctd.

For all three arrival processes, we prove

lim 1 log p(u) = —6%,

u—o0 U
where 6* > 0 is such that (—6*) = 0.

Strategy: prove that —0* is lower bound (follows easily), and prove that
—6* is upper bound (way harder).
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Arrival processes with clustering: main ideas, ctd.
Lower bound: as in large deviations based approach (Section 2.2):
o Observe: for any T >0, p(u) = P(Y () = u) = P(Y(Tu) > u).
o Hence, for all T,u >0,

27

1 T Y(Tu) _ 1
g o8Plu) = 7 '°gP( Tu T)

o Consequently, for all T > 0,

I|m|nf Iogp( )= -—TI(1/T).

(as the increments are now not i.i.d., instead of Cramér’s theorem,
the Gartner-Ellis theorem needs to be used).

o Lower bound applies to any T > 0. Hence,

I|m|nf7|ogp( Y= —I":=—inf TI(1/T).
T>0

u—ao0

o Then, as in Section 2.2, I* = 0*.



Arrival processes with clustering: main ideas, ctd.

Large deviations results allow for appealing interpretation.
Denote T* := arginfr=o TI(1/T).

Then A* :=1/T* can be interpreted as ‘cheapest’ slope to reach high
level. Given high level u is exceeded (rare event!), the most likely way is
‘roughly linear’ with slope A*.

Likewise, T*u is proxy for typical time it takes to exceed level u.
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Arrival processes with clustering: main ideas, ctd.

Upper bound: Considerably harder!
We consider three arrival processes; proofs rely on techniques developed
in Section 2.2:

o for model with M/G/co driven arrivals we use proof based on a
change-of-measure,

o whereas for shot-noise and Hawkes driven arrivals we rely on
large-deviations based argumentation.
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M/G/co driven arrivals

Model:

o New clients arrive according to a Poisson process with rate v > 0.
They stay i.i.d. times in system, with d(«) LST of generic sojourn
time D.

Number of clients simultaneously present: M/G/oo system.
Stationary distribution is Poisson with parameter v ED.

o While in system each client generates i.i.d. claims with LST b(«)
according to Poisson process with rate \.

o Premiums are generated at constant rate r (by full population, being
of fluctuating size, that is).

The claim arrival rate is thus following stochastic process A(t) that is
proportional to the number of clients in M/G/o queue.
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M/G/co driven arrivals, ctd.

Figure: Arrival rate process A(t) in M/G/oo case.
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M/G/co driven arrivals, ctd.

Net profit condition:
A(WED)-EB < r,

(Interpretation?).

As t — o0,

%IogEe‘o‘Y(t) - ®(a)=ra—v+vd(A(1l-b(a)).
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M/G/co driven arrivals, ctd.

Proof. Number of client arrivals in [0, t) is Poisson with mean vt.
Well-known: given the number of arrivals, each of them enters at a
position that is uniformly distributed on (0, t).

Hence,

1 t)! i
IogIEe*O‘Y( )= ra+ = ; IogZ e V! 3G ,') (Ze(a)) = ra—v+vZ(a),
il
i=0

where

(Check!).



M/G/co driven arrivals, ctd.

Simplifies to

t u t
1([ J P(D € ds)e~*s1=b(@) ¢4y J P(D > u)e u(=b(e) du>.
0 JoO 0

First term: clients who have left by time t. Second term: clients who are
still present at time t.

Left: computation of the limit of Z;(«) as t — oo. First term:
interchanging integrals gives

JJ (D € ds)e= (A=) gy —

— d()\( — b(a)) ).

(D c dS) —As(l—b(a))

Second term vanishes.
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M/G/co driven arrivals, ctd.

Let 8* > 0 solve ®(—6*) = 0 (implicitly requires both the clients’ sojourn
times and claim sizes to have light-tailed distributions).

Change of measure: ®g(a) = ¢(a — 6*).
We can rewrite, with Ag := Ab(—60*) and dp := d(A — Ag),
®la—0") =r(a—0") —v+vd(A1 - bla—6")))
b(a —6%)
d (/\Q <1— 7b(—9*) ) —|—/\—/\Q)

=ra—vdg+vdy p
Q

Michel Mandjes (KdVI-UvA)
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M/G/co driven arrivals, ctd.

Conclude: under new measure Q process Y(t) is still M/G/co driven net
cumulative claim process, but now with

o client arrival rate vg := v dg,
o client sojourn times with LST

—ap dla+X—)g)

E _\&T AT AQ)
Q¢ dr—rg)
o claim arrival rate Ag,
o and claim sizes with LST
_ b(a — 6*)
E aB __
Qe b(—0%)
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M/G/co driven arrivals, ctd.

Informally, process Y (t) reaching high level u is combined effect of:
(i) higher client arrival rate, (ii) longer client sojourn times, (iii) higher
claim arrival rate, and (iv) larger claims.
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M/G/co driven arrivals, ctd.

Objective: derive upper bound p(u) < e=?"“. Mimic change-of-measure

based approach of Section 2.2.

At moment 7(u) that [u, o) has been reached, we have sampled client
interarrival times F = (Fy,..., Fy) and their sojourn times
D= (Di,...,Dp).

For each of the clients, we sample number of claims during their sojourn
time, i.e., M = (M, ..., My), where the corresponding arrival epochs
are uniformly distributed over their sojourn times.

Claim sizes are

B = (3117~-~,31M1,B21,---732M27--~7BN1,..4,NMN)-

Precise sampling procedure: see book.
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M/G/co driven arrivals, ctd.

Each time random object is sampled: update the likelihood ratio.

Let 7(u) be stopping time. Is (under Q) finite almost surely. (Why?) As
before: N the number of clients that have arrived by time 7(u).

Hence p(u) equals likelihood ratio

EqL(F,D,M, B).
Let fp(-) and fg(-) be densities of B under P and Q, respectively.
Likewise, gp(-) and gg(-) are densities of D under P and Q, respectively.

The likelihood ratio can be decomposed into four factors.
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M/G/co driven arrivals, ctd.
1. First (Lg) corresponds to client arrivals. Suppose first arrival is at
time s, we obtain evident contribution
v e 1 e
v vE  dgeves

For this client we sample its specifics (sojourn time, claim arrival
times, claim sizes).
Next client arrival: suppose it is scheduled at (say) t time units from
current time, if this leads to a client arrival at s € (0, t] time units
from current time, then we get contribution

1— efut v efus/(l _ efut) v efus 1 efus

1—ewtyg e—u@5/<1 _ e—u@t) - Vg eves - F@ e—vas’

if it does not lead to client arrival before next scheduled event, then

contribution is
efl/t

e—l/@l’ '
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M/G/co driven arrivals, ctd.

1. Combining the above,

N
Lp = eanrw) [ X} _ qe-v)r@) (g N
F e Z/Q e ( Q)

2. Second contribution, Lp, corresponds to the sojourn time durations.
Check that

N
Lp = H gP(DI_) = X)X (d@) .
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M/G/co driven arrivals, ctd.

3. Third contribution concerns claim arrival times. Under both IP and
Q, conditional on number of arrivals, arrival epochs are uniformly
distributed, independently of each other (thus not contributing to
likelihood ratio). Therefore,

N —AD; . MM
=] e MAD)M /Mt e~ (A2 T, Dy ()‘>Z'
L e=2aDi(\g D) M/ M;! Ag

— e (A M) XL Di(p(—_gr))~M”

i=
i

where M+ := YV M.

4. Last contribution concerns claim sizes:

, N M; fIP’(BU) _org+ s Mt o B+. N MfB
B:_ﬂﬂf(@(a) —e (b(—=0*)M™ | wit =Y > B;.

i=1j=1
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M/G/co driven arrivals, ctd.

Since BY is sum of the claims issued by time 7(u),
Bt —rr(u) = Y(1(v)) = u.
(Why?) Recalling that r8* = vg — v, we find an upper bound for p(u):
p(u) = EgL(F, D, M, B) = Eg[LrLpLuLg]

*

_ e(y@—v)f(u)e—9*3+ < e—0 u
Is Lundberg-type inequality for this M/G/oo driven CL model.

In combination with lower bound, we find following result.

Theorem
In the model with M/G /o0 driven arrivals,

1
lim = logp(u) = —6~.

u—0o0 U
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Shot-noise driven arrivals

Now: CL model in which arrival rate is shot-noise process:
o Let D; be sequence of i.i.d. non-negative random variables,
distributed as e generic random variable D with LST d(«).
o Let M(t) be Poisson process with intensity v > 0, and let T; be i-th
arrival time it generates.
o Parameter s > 0 describes how fast ‘shots’ decay in time:

M(t
A(t) =

=1

)
D;eis(tiT").

Main idea behind using shot-noise arrival rate in insurance context:
process is well suited to model impact of (randomly arriving) catastrophic
events. Floods, windstorms, earthquakes cause a ‘pulse’ in claim arrival
rate, which eventually fades away.
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Shot-noise driven arrivals, ctd.

Figure: Arrival rate process A(t) in shot-noise case.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Shot-noise driven arrivals, ctd.
Assume that (to ensure that Y(t) eventually drifts to —0)

ED
T'V]EB<r.

Number of claims N(t) in [0, t] is Poisson with random parameter

To evaluate ®(«), above properties lead to

1 1
~logEl e Y = ro 4 - log E[ b(cr)V ]

=ra+ % logE lZ efﬂ(t)M(b(a))i

il
i=0

=ra+ % log E e A(D(1=b(a)

Hence to find expression for ®(a), we are to compute LST of A(t).
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Shot-noise driven arrivals, ctd.

Observe

M(t)

t—T;
=ZD,~J *SUdu—ZD
i=1 0

Recall: M(t) is Poisson with parameter vt. Also, conditional on number
of shot arrivals, each of them arrives at uniformly distributed epoch,
independently of each other. Hence,

t1 1—e ‘
7(1/\(15) 7Vt E —aDb; d
2 e (L L Eexp ( a . ) u

t _ a—Su
= exp <—Vt + Vf d (ale) du) .
0 s
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Shot-noise driven arrivals, ctd.

Upon combining the above, and sending t to oo, we have proved the
following result.

Ast — o0,
1 1
" logEe *Y®  d(a) = ra—v (1 —d <—sb(o‘))> .
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Shot-noise driven arrivals, ctd.

Goal: prove that decay rate of p(u) is upper bounded by —6*; use
method of Section 2.2.

Starting point: for u > r,
p(u) <P@EneN:Y(n)=u-—r),

(use that net cumulative claim process decreases with at most r per unit
of time). Hence: upper bound on p(u) that corresponds to countable
number of events.
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Shot-noise driven arrivals, ctd.
Recall definition of T*, and interpretation of T*u as typical time to
exceed u.

Intuition behind proof: one term contains contribution of epochs n in
order of T*u (and is therefore ‘dominant’), and term that contains other
contributions (and is therefore ‘negligible’).

Indeed, in combination with union bound,

T*(14¢e)u 0
p(u) < Z P(Y(n)zu—r)+ Z P(Y(n)=zu—r)
n=1 n=T*(1+e)u+1
T*(14e)u 0
< > P(Y(mzu—n+ D, P(Y(n)=0),
n=1 n=T*(1+¢e)u+1

where ¢ > 0 will be picked below.
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Shot-noise driven arrivals, ctd.

Due to Chernoff bound, for any 8 > 0 second term is dominated by

© o0
2 P(Y(n)=0) < Z EefY (™,
n=T*(14+¢e)u+1 n=T*(14+e)u+1

Let 6° > 0 be such that ®’(—6°) = 0. (As there is a * such that
®(—0*) =0, this 6° exists, and is smaller than 6*).

From ¢’(0) > 0 and ®(«) being convex, conclude that ®(—6°) < 0. It is
readily seen that —®(—60°) = /(0) > 0; see Exercise 8.1.
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Shot-noise driven arrivals, ctd.

Let n be sufficiently large to ensure that
]. o
- logEe? Y < &(—6°) + 6 = —1(0) + 4,

for some 0 € (0,/(0)); possible due to Proposition (entailing
t~llogEe Y () - d(a)).
Recognizing geometric sum, we thus find, with z := exp(—/(0) + §) < 1,

@ *
ZT (1+e)u+1

11—z
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Shot-noise driven arrivals, ctd.

Now consider first sum (contains most significant contributions, and is
therefore dominant). Again using Chernoff bound,

T*(1+e)u T*(14¢)u
DI P(Y(mzu-r< ) e IR
n=1 n=1
< (T*(1+e)u) max e V=N Y,

n=1,...,T*(1+e)u

Then observe that, using that the LST d(«) is decreasing and
1—b(—6%) <0, for any t >0,

t

_ —Su
logEe” Y = —ro*t — vt + I/f d ((1 — b(—0*))1e> du
0

< <r0* —v+wvd (M)) =®(—6")t=0.
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Shot-noise driven arrivals, ctd.

Combining the above, and using that u=!logu — 0 as u — oo, decay
rate of first sum is at most —6*:

1 . x
lim = log <(T*(1 +e)u) e W) max E e’ Y(")> < -0

u—0o0 U n=1,...,T*(1+e)u
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Shot-noise driven arrivals, ctd.
We thus have upper bound, with constant ¢ still to be chosen,

lim 1 log p(u) < —min{6*, (1(0) =) T*(1 +¢)}.

u—o0 Uy
We pick
LA R /)
T*1(0) —¢ 1(0)—6 7
where equality follows from 6* = T* [(1/T*); note that number on
right-hand side is positive because /(a) is increasing for a > 0.

Then 6* < (1(0) — §) T*(1 + €); hence contribution of second sum
vanishes. Now recall 8* is lower bound on decay rate as well.

Theorem

In the model with shot-noise driven arrivals,

lim 1 log p(u) = —6™.

u— U
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Hawkes driven arrivals

Consider counting process M(t), corresponding to epochs Ty, T, ... (in
that process M(t) increases by 1 at Ty, Ta,...), defined as follows. Let,
as At | 0,

P(M(t+ At) — M(t) = 1|A(s), s € [0,t]) = A(t) At + o(At),
P(M(t+ At) — M(t) =0|A(s), s€ [0,t]) =1 — A(t) At + o(At),

where, for given parameter v > 0,

M(t)
Nt)=v+ > Dih(t—Ti) =v+ Y. Dih(t—T;)
i=1 T <t

Process A(t) is Hawkes process. Function h(-) describes how impact of
‘shots’ D; vanishes over time. Goal: find decay rate of p(u) for CL model
with Hawkes claim arrivals.
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Hawkes driven arrivals, ctd.

Figure: Arrival rate process A(t) in Hawkes case.
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Hawkes driven arrivals
Current arrival rate depends on observed sequence of past arrival times;
‘self-exciting’.

In insurance context Hawkes arrival rate is used in case one wishes to
model effect of claims triggering additional claims.

Require HED < 1, with
0
H:= J h(u) du,
0
so that A(t) does not explode as t — o0. In addition, require that

1

1-mEp VPP

such that Y(t) eventually drifts to —oo.
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Hawkes driven arrivals, ctd.

Under above conditions, next result gives (implicit) characterization of
limiting Laplace exponent.

Proposition

Ast — o,
% logEe Y — o(a) = ra — v(1—n(b(e)),

where 1(z) is the unique root in [0,1) of fixed-point equation

1(z) = zd((1 —n(2))H).
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Hawkes driven arrivals, ctd.

Derivation of this result relies heavily on representation of Hawkes
process as branching process.

Definition of A(t) reveals that Hawkes arrival process can be split into

o Poisson process with constant rate v, in the sequel referred to as
immigrants,
o arrivals that are induced by the immigrants.
Thus, each of immigrants increases future arrival rate. Arrivals that
occur due to this increase, are called children of this immigrant. In turn,
those children are potentially parents of next generation, and so forth.
Useful recursive structure, leads to fixed-point equation for 7(z).
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Hawkes driven arrivals, ctd.

Proof. First objective: analyze transform of N(t) (number of claim
arrivals in [0, t)).

Let S(u) represent number of children of immigrant, u time units after
its own birth, including immigrant itself. Define pgf n(u, z) := Ez5),
for z < 1.

Then

]EZN(t) — i e—l/t (Vt)k <
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Hawkes driven arrivals, ctd.

Next task: identification of n(u, z), done by studying each cluster
separately.

Key element: distributional equality, for fixed t > 0 and v € [0, t],

K(u)
SwLi+ D Su-T)=1+ ) Si(u—T)),
i=1

inTi<u

where S;(u) are i.i.d. copies of S(u); here Ty, Ty, ... are birth times of
corresponding children, and K(u) is inhomogeneous Poisson counting
process with rate Dh(u) (conditional on sampled value of D that
corresponds to immigrant under consideration, that is).

Interpretation: S;(u) is number of children of child i (including the child
itself).
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Hawkes driven arrivals, ctd.

P(s): probability that, conditional on a child being born before time ¢, it
was actually already born before s, for s < t. Then,

PK(S) = K() = 1) _ ROKGS) = L.K:
Pl =1 B(K(5) = 1)

Conditional on D, we thus find, with

r(s,t) == Df: h(u)du, H(t):= Jt h(u) du,

that 0.) (et
r(0,s)e="%s) . 1S H(s
r(0, t)e=r(0:t) H(t

note that D cancels. Now define p;(s) := P;(s) = h(s)/H(t).
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Hawkes driven arrivals, ctd.
Appealing to distributional equality, and conditioning on D,

n(u, z) = J:O Z E[z°W | K(u) = k,D = x| P(K(u) = k| D = x) P(D € dx)

o[ [ ] e O .

_ f i (J (u—5,2) puls) ds>ke—xH(u)(X'LIlE!u))kIP’(De dx)

= ZL exp < Ju(l —n(u—s,z)) h(s) ds> P(D € dx),

0

which leads to the fixed-point equation

n(u,z) = zd Ou(l —n(u—s,2)) h(s) ds) .

0
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Hawkes driven arrivals, ctd.

Now focus on identifying ®(c). First consider E e=*Y () which we
express in terms of 7(u, b(«)). Observe:

1 1
. logEe Y (®) — ro — " log E[b(a)V®].

Hence,

O(a) = ra— v (1— lim 1Jtn(u, b(a))du)

t—00 0

=ra—Vv (1 — 7](007 b(a))) ’

where, because of fixed-point equation for n(u, z), it follows that
n(oo, z) = n(z) solves fixed-point equation featuring in statement of
Proposition.
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Hawkes driven arrivals, ctd.

In the model with Hawkes driven arrivals,

1
lim = logp(u) = —6~.

u—o0 [y
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Hawkes driven arrivals, ctd.

Proof. Completely analogous to that of case with shot-noise driven
arrivals, except that we have to find a new proof of logE e’ Y < 0.

From definition of S(u) it follows that S(c0) = S(u) for all u = 0, so that
for all z € [0, 1] we have that n(u, z) < n(o0,z). Using b(—6*) < 1,

t

f n(u, b(—0")) du <f (o0, b(—0%)) du — (00, b(—6")).
0 0

Hence,

t
logEe” V() = —rg*t — vt + Z/J n(u, b(—0*)) du
0

< (=r0* —v(1—n(b(—0%)))) t = d(—6*) t = 0.
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Dependence between claim sizes and interarrival times:
main ideas

This chapter: dependence between claims and interarrival times.

o Claim size being correlated with previous interarrival time;

o interarrival time being correlated with previous claim size.

Objective: determine transform of time-dependent ruin probability.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Claim size correlated with previous interarrival time

Model 1. Claim size directly determines parameter of exponential
distribution of preceding interclaim time.

Concretely: if claim size is v > 0, then length of interval between
previous claim’s arrival time and this claim’s arrival time has exponential
distribution with parameter A(v) > 0.

The time-dependent ruin probability p(u, t) and the double transform
m(a, B) are defined in the usual manner.
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Claim size correlated with previous interarrival time, ctd.

Approach of Section 1.3: m(a, 3) is written as sum of w1 («, 8) (ruin due
to first arriving claim) and m(a, 8) (ruin occurring later).

First contribution:

B © A(v) 1—e @ o (AW+BV/r _ g—av
7r1(04,5)*fo Av)+ 6 < a a—-(W)+B)/r

With s(v, ) defined as (A(v) + 3)/r, this quantity can be interpreted as

o) =2 (G (L - ),

which we can calculate (as we know the distribution of B).

) P(B e dv).
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Claim size correlated with previous interarrival time, ctd.

Second contribution, as in Section 1.3:

m(a, B) = J‘OO Av) <

0 e—s(v,B)w — emaw
f p(w — v, Tg) dW) P(B € dv).

0 r v a — S(Va ﬂ)
Directly seen: ma(a, 8) can be written as difference of
PAv) [P e svPw
73 (v, B) :=L . (Jv a_s(v’ﬂ)p(wfv, Tg)dw) P(B € dv)

_ Jw Ay 3 e—s(vB)v <£D e~ p(w, Ts) dw> P(B € dv)

o rla—s(v,

_g(_ 2B s,
2( 20 (s8..5)).

which is an expression that we cannot further evaluate (yet), and
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Claim size correlated with previous interarrival time, ctd.

5 (e, B) f Al (Jw - _e;((l: 5Pw = v, T5) dw) P(B € dv)
_ LOO " _A(S‘g/ﬁ e BB e dv) JOOO e~ p(w, Ts) dw

= (it ) T

Observe that

which we can evaluate, as we know distribution of B.
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Claim size correlated with previous interarrival time, ctd.

Isolate the quantity of our interest:

(0,B) + 73 (0, 8)

™
A e SN

But: 75 (v, B) is not known yet.

Consider case that claim size distribution is given by
d
P(B<v) = Z piU(v — b;),
i=1

with U(-) unit step function and py,...,ps > 0, Z:-jzl pi = 1. Hence:
there are K possible claim arrival rates A(b1), ..., A(bg), assuming (wlog)
that )\(b1> < )\(bz) <...< )\(bd).
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Claim size correlated with previous interarrival time, ctd.

Then
. < A(bi) e fl@) —g(a)
1+7°(a,B)=1— ) pjmrt—e = — =2
(o 8) izzlp)\(b,-)—l—ﬂ—rae fla)
where ;
f(a) = [T\®) + 5~ ra).
and
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Claim size correlated with previous interarrival time, ctd.

Apply ‘Rouché’ to f(a) — g(a): it has exactly d zeroes in right-half plane.

Inspection of behavior of 1 4+ 7°(«, 8) at the asymptotes « = s(b;, ),
i=1,...,d: these d zeroes of 1 + 7°(a, B) (say, & (5),...,a;(B)) are
all real, exactly one being located in (O,S(bl, B)), one in

(s(b1,),s(b2, B)), etc.

For those zeroes, numerator (i.e., m1(c, B) + 75 (v, 3)) should be zero,
too. Leads to d linear equations in the d remaining unknowns

n(s(b;, B), B) featuring in 75 (v, ).

Thus, 7(a, ) is completely determined.
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Claim size correlated with previous interarrival time, ctd.

Model 2. Sequence By, Ba, ... represents the i.i.d. claim sizes. Vi, V5, ...
is second sequence of i.i.d. random variables, independent of the claim
sizes.

After n-th claim arrival, new claim interarrival time A1, threshold value
V41 and claim size B,y1 are drawn. If B,41 = v and z := v/V,;1, then
Any1 is exponentially distributed with parameter A(z) > 0. We consider
the case that A(z) attains values in [0, D] for some D > 0.
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Claim size correlated with previous interarrival time, ctd.

Objective: time-dependent ruin probability p(u, T3).
As At |0,

P(U, Tﬁ) =

(1 - JOD A(z) ArJOOO P(B e dv) d,P(V < v/z) — ﬁAt) p(u+rAt, Tp)

¥ f Az) At f B(B € dv) d:B(V < v/2)

+ L A2) AtJ:IP’(B € dv) d,P(V < v/2) plu— v, Ts),

up to o(At) terms.
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Claim size correlated with previous interarrival time, ctd.

Define
x(a) = L A(2) JOOO e P(B e dv)d,P(V < v/z).

Follow standard procedure: subtract p(u + r At, Tg) from both sides,
divide by At, and take limit A | 0. We obtain

—ra—(’ip(u7 Ts) = —(x(0) + B)p(u, Ts) +

D 0
J )\(Z)J P(Bedv)d,P(V < v/z)+
0 u

D u
f )\(Z)J P(Be dv)d,P(V < v/z) p(u—v, Tg).
0 0

Next step: transform with respect to u, i.e., multiply both sides by e~
and integrate over wu.
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Claim size correlated with previous interarrival time, ctd.

Define 7(c, 8) in usual manner, and denote () := p(0+, T3).

For any a, 8 > 0,

—ran(a,B) + rf(pB)
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Claim size correlated with previous interarrival time, ctd.
Next goal: identify 7(«, 8), which requires f(3). Observe that
rf(B) — (x(0) = x(a)) /e
(o, B) = .
@0 = S X0 + x(0) - 5
Notice: x(«) is Laplace transform of probability distribution, and hence

convex and decreasing. Therefore, denominator has exactly one positive
real zero a*(B) for every 5 > 0.

For any 8 > 0, root of denominator is also root of numerator, so that

£(8) = %x(o) ;3220)4*(6))'

Theorem

For any o, 8 > 0,

(x(0) = x(e*(B))/e*(B) = (x(0) = x(@))/ex
ra.—x(0) + x(o) = 8 '

(e, B) =
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Interarrival time being correlated with previous claim size

Mechanism is similar to Model 2 discussed above. Consider
z=(zy,...,24) suchthat 0 = zg < zy < --- < z; = o0. Claim sizes
By, By, ... arei.id. (distributed as B). In addition, Vi, Vs, ... arei.id.,
independent of claim sizes (distributed as V).

If claim By, is in [zi—1V,, z;V,), then time until next claim is
exponentially distributed with rate A; > 0.

Key object of interest: for i =1,...,d,
pi(u,t) :=P(3Is € [0, t] : Xu(s) < 0]|J(0) = i);
{J(0) = i} corresponds to scenario that arrival rate at time 0 is A;.

Objective: characterize p;(u, t) through its double transform
o] o]
mi(a, B) = J f Be= =Bt p.(u, t) du dt.
o Jo
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Interarrival time correlated with previous claim size, ctd.

By familiar method, up to o(At) terms, with T3 exponentially
distributed with parameter 3, as At | 0,

v v
- —

d ru
pi(u, Tg) =)\,-AtZJO P(Bedv)P(Ve| ) pi(u— v, Tp)

Zj' zj
+ NAtP(B=u) + (1= N At — BAL) pi(u+ rAt, Tg).

Subtracting p;(u + r At, Tg) from both sides and dividing full equation
by At, sending At to 0:

v v
—— (u—v, Tg)+
Z zj_l))PJ( 3)

0 4
—roopi(u, Tg) = A,-JZ{L P(Bedv)P(Vel

AiP(B = u) — (Ai + B) piu, Tp).
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Interarrival time correlated with previous claim size, ctd.
Define, for j =1,...,d,

xj(a) = LOO e *P(Bedv)P(Ve [%, ZJ—‘;))

Multiply equation by e~*" and integrate over u. Integrating by parts,
and recognizing convolution in right-hand side, and denoting
fi(8) := pi(0+, Tg), we obtain following result.

Proposition

Forany a,8>0,andi=1,...,d,

d
—rami(a, B) + rfi(8) = \; 2 x;(@) mi (e, B) +

1—b(«)

Ai — (A\i + B) mi(a, B).
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Interarrival time correlated with previous claim size, ctd.
Proposition provides equations, containing d unknowns fi(8), ..., f4(8).

Observe that these equations yield that, for any pair i,j € {1,...,d},
(ra =X = B)mi(a, B) = rfi(B)  (ra—X; = B)mj(ex, B) — rfi(B)
Ai B Aj ’

or, equivalently,

mj(a, B) = Aj(a, B) mi(a, B) + Bij(e, B),
where

Al )= AJ:-H’ By, 8) = =S f) 5tra r’(@ B

Hence,
(—ra+ X+ B)mi(a, B) + rfi(8)

=\ Z x;j (@) (A,-j(oz,ﬁ) mi(o, B) + Bij(Oé,ﬂ)) n Ail;b(a).
j=1
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Interarrival time correlated with previous claim size, ctd.

Hence, 7;(«, 3) can be solved:

rf(B) — A 5y xj(@) By, B) — Mi(1 — b(a)) /e
ra = A+ A 5 xi(@) Ag(a, 8) — B '

7"'i(ozvﬂ) =

Any zero of denominator should be zero of numerator as well. Minor
computation (for 3 > 0 given and for i = 1,...,d): solve H(a) = 1, with

d
)\.
H(a) = J; Wij_ij(a)-
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Interarrival time correlated with previous claim size, ctd.

Observe: H(0) < 1, whereas H(«a) approaches 0 from below as o — 0.
Assume (wlog) A1 < -+ < Ag. With ag =0 and o := (\j + 8)/r, we
have that

lim H(a) = o0, lim H(a) = —o0,

ala; alaj
forj=1,...,d.
Hence, for all 8 > 0, there is solution to H(a)) = 1 in each of intervals

(aj_1,0j), for j =1,...,d. We call these zeroes oj(3), ..., a5(5),
which are necessarily zeroes of numerator as well.
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Interarrival time correlated with previous claim size, ctd.
Consequently, for a = o (8),...,a5(8),

d
— A Z Xj(@) Bij(a, B) — Ai ! —Ot:(a)

— h(8) (1~ +>\r2>\+6—ra £8) ~ M2 _ ).

(67

Using that H(a}(8)) = 1 for j =1,...,d, after dividing by A;:

8) 1 - b(a} ()
ZA +ﬁ—ra " Twm

forj=1,...,d.

Observe: d linear equations do not depend on i anymore, so that f;(3)
can be identified.
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Interarrival time correlated with previous claim size, ctd.

Foranya>0and 3>0,andi=1,...,d,

. _ C,'(Oé,ﬂ)
I(avﬁ) ra—)\i+)\i27=1Xj<a)A'j<a’5)_67

where the f;(3), for j = 1,...,d, follow from the d linear equations.
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A more general Markov-dependent risk model

Let A; denote time between the arrival of (i — 1)-st and i-th claim and

Ao = By = 0. Then

P(Apt1 < x,Bpy1 <y, Zpv1 =J|Zn = i,(Am, Bm, Zm), me {0,1,...,n})
=PAL<x,Bi <y, Zy=j|Zo=i) = (1— e )p; Fi(y),

where (Z,)nen is irreducible discrete-time Markov chain with finite state

space {1,...,d} and transition matrix P consisting of transition
probabilities pjj 1= P(Z,11 = j| Z, = i).

Thus: at claim arrival, Markov chain jumps to state j, and distribution
function Fj(-) of the claim size depends on new state j. Then next
interarrival time is exponentially distributed with parameter ;.
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A more general Markov-dependent risk model, ctd.

By and large, same strategy can be followed as before: set up differential
equation for p;(u, Tg), transform with respect to v.

Leads to expressions for 7;(c, 3), in terms of d unknowns. ldentification
of these unknowns is a bit more involved, though (requires some complex
analysis).
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Advanced bankruptcy concepts: main ideas

This chapter: CL model but with a focus on bankruptcy rather than ruin.

Three different bankruptcy criteria are studied:
o Reserve level process drops below 0 at Poisson inspection;
o time in first excursion (of reserve level process) below 0 exceeds
threshold;
o total time (of reserve level process) below 0 exceeds threshold.

Objective: determine transform of bankruptcy probability.
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Poisson inspection

Surplus level is only observed at Poissonian inspection epochs 51, S, .. .,
i.e., not continuously in time.

Times between two subsequent inspections (i.e., S, — S,_1 for n€ N,
with So = 0) are i.i.d. exponentially distributed random variables, say
with parameter w > 0.

Quantity of interest: (time-dependent) bankruptcy probability
p(u,t) :=PEneN:S, <t,X,(5,) <0).

Clearly, p(u, t) < p(u, t).
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Poisson inspection, ctd.

Y (t)

NIAN

N

NIMN

N \T/jt

Figure: Scenario with ruin and bankruptcy (left panel), and scenario with ruin
but no bankruptcy (right panel). Black dots indicate Poisson inspection epochs.
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Poisson inspection, ctd.

Increments of Y(t) between two consecutive inspections, i.e.,
Z,:=Y(S,) — Y(Sn-1),

which form sequence of i.i.d. random variables, distributed as generic
random variable Z.

Killing time Tg is exponentially distributed with parameter 3,
independent of surplus process.

Number of observations before killing, denoted by N = Ng,, has
geometric distribution with success probability 5/(8 + w):

w "B
P(N:n):<ﬂ+w> R n=0,1,....

(Check!)
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Poisson inspection, ctd.

Define associated running maximum process:

n
Yg,w = sup Y(Sn) = sup Z Zm;
n=0,1,...,Ng n=0,1,...,Ns. o1

maximum over empty set is zero.

Notice that ~
p(u, Tg) = P(Ygw = u).

Goal: analyze p(u, Tg) by evaluating IP’(\_//;M > u). Important role is
played by transient waiting time in M/G/1 queue.
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Poisson inspection, ctd.

Focus on transform of waiting time Wy of the N-th client in M/G/1
(starting empty), with N geometrically distributed with success
probability g € [0, 1].

Arrival rate is v > 0. Jobs given by the sequence of i.i.d. random
variables (D, )nen, distributed as generic random variable D with LST

§(a) =Ee P,
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Poisson inspection, ctd.
Lindley recursion: W, .1 can be expressed in terms of W, through,
Wn+]_ = maX{ Wn + Dn — En+1,0},

with Wy = 0 (suppressed elsewhere) and (E,)qen exponentially
distributed with parameter v.

This leads to identity, with w,(a) := Ee=Wr,

0 0
Wpyi1(a) = L L e om0k ey dfy P(W, + D, € dx).

Distinguishing between the cases x < y and x > y, this expression equals

0
v

o0
J (7 — e ™) P(W, + D, € dx) + f e " P(W, + Dy € dx),
a—V Jg 0

which, using that W,, and D, are independent, leads to
aw,(v)o(v) — v wy(a)d(a)

o — VUV

Whn+1 (a) =
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Poisson inspection, ctd.

Now: find an expression of waiting time of the N-th client.
Multiplying both sides by (1 — g)"g and summing over n =0,1,...:

qgla—v) +a(l—q)di(v) ]Ee_”W""

—aWy _
e a—v+v(l—q)ia)

Constant E e " can be identified in the usual manner: there is
(unique) ag € (0,v) such that the denominator vanishes, so that
numerator should be equal to 0 for this ayp.
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Poisson inspection, ctd.

This zero ag can be rewritten in a convenient form. With

d(a) = Eeo(Pn—Enz) — _ Y o(a),

V—«

we are to solve ®(ag) = 1/(1 — q). Hence, defining W(-) as the

(right-)inverse of ®(-),
1
w0 =Y <1_q) -

There is exactly one real root between 0 and v. (Check!)

Hence,
g v—ag 1

1-qg ag O0(v)

E e—I/WN _
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Poisson inspection, ctd.

We found following result, which is counterpart of Theorem 1.1.

For oo > 0 and q € [0, 1],

a—v+ (v—ag)a/ag

E 704WN:
€ qa—u+u(1—q)6(a)

_ <O%—1> a_,/+yc(lly—q)5(04).
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Poisson inspection, ctd.
Now: relate waiting times to associated running maximum process.

Lemma
Denote F, := D,_1 — E,. Foranyn=20,1,...,

4 max ZF—G

m=0,1,...,n

Proof. By iterating the Lindley recursion,
W, = max{W,_1 + F,,0} = max{max{W,_> + F,_1,0} + F,,0}
= max{Wn,z + anl + F,,7 Fn,O}.
After n iterations:
n
W, = max {minlaxn Z F,-,O} .

Stated follows by reversing time.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Poisson inspection, ctd.

By combining lemmas: expression for transform of running maximum
process (Gp)nen, With number of terms having a geometric distribution.

Conclude that

a—v+(v—awo)a/ag

E 7OLGN:
¢ a—v+v(l—q)dla)

—(;_Q T
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Poisson inspection, ctd.

Now, for @ = 0 and 3 > 0, focus on
oo, ) = Be™ Ve,

Recall: Y3, is running maximum of partial sums of (Z,)nen, over
maximally Ng ,, terms.

By ‘Wiener-Hopf' (Proposition 1.2), we can decompose increments as
Z=7"-7",
with Z* and Z~ both non-negative and independent.

Next step: consider Z~ and Z* in greater detail.
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Poisson inspection, ctd.

BN

NN

T\

T, t

Figure: The decomposition Z = Z+ — Z~.
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Poisson inspection, ctd.

o Observe: Z~ is distributed, again by ‘Wiener-Hopf’, as running
minimum of Y'(t) over a period that is exponentially distributed
with parameter 5 + w. (Why?)
Section 1.3: this running minimum has exponential distribution with
parameter (8 + w). Recall: 1(-) is right inverse of
p(a) = ra— A1 — b(a)).

o Results of Section 1.3:

Eefaz+_a_¢(5+w) B"_w

pla) =B —w(f+w)
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Poisson inspection, ctd.

Consequence of above observations: Vg’w can be interpreted as waiting
time of Ng ,-th client in M/G/1 queue (with service speed 1), where
N3 ., is geometrically distributed with success probability g := /(5 + w),
arrival rate is v := (8 + w), and jump sizes D are distributed as Z,, i.e.,

a—Y(L+w) BH+w
pla) =B —wip(B+w)

§(a) =

Advanced Ruin Theor Michel Mandjes (KdVI-UvA
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Poisson inspection, ctd.

Combining the above, g(«, 3) equals

(0%

3 a—ww+wwwwﬂ+m—aw£
Btw w a—9Yf+w) f+w
Btwepla) = B—wip(B+w)
Elementary calculus: this expression can be simplified to

B YB+w) (a \el@)-B-w
Frw a—w(6+w)< 1) EOE

Qo

a—Y(B+w) + (B +w)
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Poisson inspection, ctd.

Next step: identify ag. Note: o = 1(8 + w) is root of denominator, but
automatically of numerator as well.

Therefore: consider other root of numerator, i.e., ag = ¥(f).
Rearranging the factors in numerators and denominators, we find
following result.

Theorem
For any o > 0 and 3 > 0,

a—9(B) B pla)-B-wiy(B+w)
pl@) —BY(Ba—PB+w) B+w

o(a, B) =

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Poisson inspection, ctd.

This theorem: generalization of Theorem 1.1. Indeed, as w — o, which
corresponds to ‘permanent inspection’, we recover Theorem 1.1.

In addition (Check!),

o(a, B)

A0 o)

Following remarkable distributional equality is obtained.

Theorem

For any 5,w > 0,
_ d = _
Y(TB) =Y(Tgtw) + Y8,

with random variables on right-hand side independently sampled.
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Poisson inspection, ctd.

Now consider information loss due to Poisson inspection. Section 2.2:
approximation for p(u) for u large in case of light-tailed input.

We found v, 8* > 0 such that, as v — o0,
p(u)e” ¥ — 7.

Question: how much lower is p(u) := p(u, ) than p(u)?
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Poisson inspection, ctd.

Proposition

Assume Be . As u — o0,

(u) v Yw)
b)) T Pw) + o

“cl

jel
—

Proof: see book. Main idea: net cumulative claim process Y°(t) (i.e.,
different from our actual net cumulative claim process Y(t), viz. with
claims ZT, exponentially distributed interclaim times Z~, and unit
premium rate) exceeds u, and then use result from Section 2.2.

This shows: v 1 1 as w grows large, as expected.
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Length of first excursion

As before: 7(u) ruin time.

In addition, U°(u): length of interval after 7(u) at which level X, (t)
uninterruptedly attains a negative value (or: net cumulative claim process
Y (t) uninterruptedly attains a value above u).

Then,
Vg(u) := min{U°(u), Tg — 7(u)} 1{r(u) < Tg}.

Of interest when bankruptcy occurs when length of first excursion
exceeds some threshold.
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Length of first excursion, ctd.

v° (u) \\

Figure: Net cumulative claim process Y(t), and quantities 7(v) and U°(u).
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Length of first excursion, ctd.

We know from Section 5.4 how to compute overshoot (through its
transform)
P(Y(r(u)) —uedy,m(u) < Tg);

corresponding density is called h(u, y, 3).

Hence, by memoryless property of exponential distribution,

0
Ee—aVB(u) _ J h(u,y,ﬁ)E e @ min{o(y), Tz} dy,
0

with o(u) time it takes for Y(t) to decrease by at least u.
Lemma 1.1: for any y > 0,

Ee—00() _ g=¥(a)y.

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Length of first excursion, ctd.

For any o = 0 and 8 > 0, and for any non-negative random variable X
that is independent of Tg,

Ee @ min{X,Tg} _ ﬂ + o E e*(aJrﬁ)X'
a+p a+p

Proof. Rewrite E e~ Mn{X.Ts} by conditioning on Ts:
J 56 BtEe—a min{X,t} dt

Q0 a0
J Be~ 5’-‘J (X € dx) e dt + J 5e*ﬁff P(X € dx) et dt.
t

0

Then: swap order of integrals, evaluate integrals over t, and interpret the
obtained expressions in terms of the LST of X.
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Length of first excursion, ctd.
Combining the above (including the use of Lemma),

o0
Ee—aVe) :f h(u,y,5)< B _«a Ee<a+5>o<y>> dy

B, T+ JOO h(u,y, B) e V@0 dy.
a+p a+ B Jo 7
Interpret integral in terms of overshoot Y (7(u)) — u. Define

X, 8) 1= B(e VD W0 17 () < Ty,

For any > 0 and 8 > 0,

Ee Vs — p p(u, Tg) + ai

Py +ﬁx(u,a,ﬁ)~

Advanced Ruin Theory Michel Mandjes (KdVI-UvA)



Length of first excursion, ctd.
All expressions appearing in Proposition can be assessed. Indeed,
o as computed in Section 1.3,

LOO e “'p(u, Tg)du=7(w,p) = . 1 (W(w) B ) ’

o whereas the transform of x(u,a, ) follows from

Q0

K, 57) = [ @B IO 1 r () < To)) do

0
A <b(d}(5)) —b(y)  bw) — b(v))
pw)— B v —P(B) ¥ —w ’

using the analysis of Sections 5.3-5.4, leading to

J e x(u, 0, 8) du = r(w, B, V(0 + B)).

0
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Total time with negative surplus

Consider total time (until exponential killing) that net cumulative claim
process is larger than u:

Ts Ts
Wi (u) ;:L 1{X, (t) < 0} dtzL 1{Y() > u} dt.

Is of importance when bankruptcy depends on time surplus level is below
zero.

We analyze Ws(u) through its transform (with respect to u). Three
disjoint events:

() {r(u) + U°(u) < Tg},

(it) {r(u) < Tg < 7(u) + U°(u)}, and

(i) {Tp < 7(v)}.
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Total time with negative surplus, ctd.

o Case (i) gives contribution
E(e“"uo(“)l{T(u) + U°(u) < Tg}) E e~ Ws(©),

which equals x(u, a, B) E e=*W5(0) (Exercise 10.2).

o Calling 7N'/3 remaining part of Ty given that Tg > 7(u) plus
memoryless property: the contribution of Case (ii) is

E(e "o 1{r(u) < T3, U°(u) > T3}) ~
= E(e —oTs1{r(u) < T, 5}) — E(e7*"71{r(u) < T, U°(u) < T3})

— b T - 5w a),

o Case (iii) finally contributes P(Ts < 7(u)) = 1 — p(u, Tg).
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Total time with negative surplus, ctd.

Adding the three contributions:

Ee Ws(W) — y(u, 0, /) Ee™*Ws(0) 1 1

o +5 p(U, TB) - mX(U»ayﬂ)-

Recall: we can evaluate the transform (to u) of p(u, Tg) and x(u, o, )

Hence, we are left with analyzing E e—Ws(0),
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Total time with negative surplus, ctd.

To compute E e=*W5(©) we work with two auxiliary random sequences:

o Let D; be the length of the i-th uninterrupted period that Y(t) is
negative (‘down’);
o likewise, we let U; be the length of the i-th uninterrupted period
that Y(t) is non-negative (‘up’).
Observe: (D;, U;)ien is sequence of i.i.d. two-dimensional random vectors;
let (D, U) denote corresponding generic random vector.

Exploiting the regenerative structure,

Ee W = E(eV1{D+ U < T}) Ee Ws(© 4
E(e "s=P1{D < T5 < D+ U}) + P(T5 < D).

Goal: evaluate three unknown quantities.
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Total time with negative surplus, ctd.

Y(t)

Figure: Net cumulative claim process Y (t), and the quantities (Dj, U;)ien.
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Total time with negative surplus, ctd.

Start with Q,(8) :=P(Tg < D).

P(Tg = D) can be rewritten as
o0

foo Ne— (A <fﬂ P(Be dv)P(Ts > 7(rt — v)) + f

P(Be dv)) dt
0 0 rt

by conditioning on the first claim arrival time. Recalling that
P(Tg > 7(u)) = p(u, Tg), performing the change of variable s = rt, and
splitting the exponent, this expression equals

)\ 0 s
= L L P(B e dv)e  A+AVIrp(s — v, Tg) e WA =/r s

A 0 0
= f f P(B € dv) e +A)s/r gs.
rJo s
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Total time with negative surplus, ctd.

Evaluating integrals in standard way, and recognizing underlying
convolution structure,

B A A+ 0 A A+ 0 A+ B
91<5)=A+5+A+6b< r )_rb( r )W< ' ’ﬁ>’

with 7(a, 3) as given in Section 1.3. After some calculus:

_ B
Ql(ﬁ) - ”/)(5)
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Total time with negative surplus, ctd.

We now focus on Qs (a, 3) := E(e~*Y1{D + U < Tg}). For conciseness:
Y, the overshoot over level u, i.e., Y(7(u)) — u.

Then Qy(av, B) equals, again by conditioning on first claim arrival time,

Q0 rt o0
f e~ (A+A)E (f P(B € dv) f P(Y,i , edy,7(rt —v) < Tp)
0 0 rt—v

E(e*"1{o(y) < Ts})

rt

+ foc P(B e dv)E(e "™ 1{o(v — rt) < TB})> dt;

distinguish between (i) scenario in which after first claim arrival (before
Ts) net cumulative claim process is below 0 (first term between
brackets), and (ii) scenario in which at first claim arrival net cumulative
claim process has exceeded 0 (second term between brackets). Expression
has been set up such that at first claim arrival (at end of D) and at the
end of U, killing time Tz has not expired.
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Total time with negative surplus, ctd.

Y(t) Y(t)
y v —rt
t
v—rt t —rt
NN W oo =rt)
—rt

Figure: Net cumulative claim process Y'(t) in scenario that multiple claims are
needed to exceed 0 (left panel), and in scenario that one claim suffices (right
panel). Left panel: first jump (of size v < rt) happens at time t, eventually
leading to overshoot of y over level 0. Right panel first jump (of size v > rt)
happens at time t, directly leading to overshoot of v — rt over level 0.
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Total time with negative surplus, ctd.

Observe that, for any a > 0and 58> 0, and y > 0,
E(e W) 1{o(y) < Ts}) = J f e~ Be= Bt P (y) € dx) dt

:f e~ AXP(g(y) € dx)
0
—Ee (@B o(y) = g=v(at+B)y

Hence, substituting s for rt, Qa(a, ) is sum of two terms:

)\ a0 S
7j e*“ﬁ)s/ff P(B e dv)E(e V(DY 1{r(s — v) < Ts}) ds
0 0

and

A o8] 0
- f e~ A 5/’J P(B € dv) e ¥(@+A) (v=9) g,
0 s
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Total time with negative surplus, ctd.
Recognizing convolution structure, first term is

Ab(Ajﬂ> <A+543Ma+ﬁ0

r

Second term: swap order of integrals (and elementary calculus):

b(¥(a + B)) — b(A + B)/r)

A NI B - rilat )

We conclude that

fa(a,8) =26 (2E0) k(2 st s ) +

) bla+B)) = b(A + B)/r)
A B=rpla+p)

Inserting (known) expression for k(«, 3,7), we eventually find

X B(B) — blia + B))
ro Yla+p)—v(B)

QZ(aaﬁ) =
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Total time with negative surplus, ctd.
Then: Q3(a, B) := E(e*(7#=P)1{D < T < D + U}). Again by
conditioning on first claim arrival time,

J:o e~ (B (J: P(B € dv) JOO P(Y{_, edy,7(rt —v) < Tp)
rt—v
E(e=*"#1{o(y) > T5s})
+ JOO P(Be dv)E(e " 1{o(v — rt) > Tg})) dt.
rt
For any « > 0 and 8 >0, and y > 0,

E(e™" Ho(y) > Ts}) = LOO e *'Be P Pla(y) > t) dt

- LoPO0) > Tary)
= = i 5 (1 _ e—w(aﬂi’)y).
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Total time with negative surplus, ctd.

Using same techniques as before,

Qs(a,8) =27 b(k+ﬁ) ( A+ﬂﬁ,) ( 218 5 g(a +BQ>

ra+p r
LM <1—b((A+B)/ r)  b(y(a+pB)) — ((/\+ﬂ)/f)>
a+f A+ A+ B —rp(a+p) ’

Considerable calculus: simplifies to

A B (1—b(1/)(/3’)) b(i/f(ﬂ))—b(i/)(aJrﬂ)))'

Q3(Ol,/8) =

ra+p v(B)  Yla+B)—v(B)
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Total time with negative surplus, ctd.

Upon collecting above results, we have identified transform of Wp(u).

For any o >0 and 3 > 0, Ee=“Ws() js given by
Ee W@ = y(u,a, B)Ee oWe @ 11

Pl Ts) = =

with transforms of p(u, Tg) and x(u,«, 3) as given above, and

_ Q1(8) + Q3(a, B)
aWg(0) _ 241
e = 1-(a,B)

s x(u, a, B)
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