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Non-cooperative game theory I: Prisoner’s dilemma
Dresher & Flood (1950), Tucker (1950)

‘ ll: do not confess  Il: confess
I: do not confess Both 2 years I: life; 11: free
I: confess I: free; II: life Both 20 years

Cooperative outcome unreachable under rational decision making
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Non-cooperative game theory II: Nick Vriend game

Trafalgar Oxford

Hyde Park Covent

Square  Circus Corner Garden

Trafalgar 1,1 0,0 0,0 0,0 0,0
Square
Oxford 0,0 1,1 0,0 0,0 0,0
Circus
Hyde Park 0,0 0,0 1,1 0,0 0,0
Corner
Covent 0,0 0,0 0,0 1,1 0,0
Garden

0,0 0,0 0,0 0,0 1,1

2/15



Nash equilibria

Nash equilibrium agreements are self-enforcing
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Nash equilibria

Nash equilibrium agreements are self-enforcing
Unique Nash equilibrium
® TINA: Economic considerations determine outcome
Multiple Nash equilibria
e Political freedom, limited, but not determined, by economic considerations

® Negotiations are necessary
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Results

Analysis of transboundary pollution game
Determination of the set of all Nash equilibria 1
Theoretical upper bound efficiency International Environmental Agreements

Literature so far has focused on the least efficient equilibrium

1caveats apply
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Programme

Transboundary pollution game

Unique continuous equilibrium

All non-continuous equilibria

Efficiency gains
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The transboundary pollution game
van der Ploeg & de Zeeuw (1992)

Emissions g;(t) of N countries affect stock x(t) of pollutant

Z qi(t) — ox(t), x(0) =xp

Value for country i

Vi(xo) = max / e | ag(t)— Do —Ix? | dt
qi 0 N 2 ., 2

~
benefits industrial production pollution costs
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Calibration: assumptions

® Business-as-usual emissions: 10 GtCly.
® Current CO, pollution: 0.5 TtC

e Carbon budget: 1.0 TtC

® Current Social Cost of Carbon: 400 $/tC
® Discountrate: p = 0.025y~!

® Natural decay: § = 0.001y™!
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Calibration: results

Coefficients

a=678T$/TtC, B =339-10°Tsy/TtC*>, ~=1.953Ts/y TtC*
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Calibration: results

Coefficients
a=678T$/TtC, B =339-10°Tsy/TtC*>, ~=1.953Ts/y TtC*

Natural units

2

o
[value] = =565Ts, 2022 Global GDP: 101 Ts
VB
[time] = g =417y,
(6%
[pollutant] = —= = 0.833 TtC
VB

After rescaling to natural units: a = =~y =1, p = 6.25, § = 0.42.
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How is the game played?

The state variable x(t) contains all relevant information about the system
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How is the game played?

The state variable x(t) contains all relevant information about the system

Emission strategies only condition on the state

qi(t) = ¢i(x(t))

Country i chooses best strategy given the actions of all others

¢i = %i(gbla ) ¢i—1a ¢i+la cee 7¢N) = <@i(qb—i)

If this holds for all j, then (¢1, ..., ¢n)isa
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Finding Nash equilibrium strategies



Finding Nash equilibrium strategies
Hamilton—Jacobi equation:

pVix) = max|g — 67/2 = /2 + V[0 (g + D dy(0) — )| = qi=1+V/()
' J#i
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Finding Nash equilibrium strategies
Hamilton—Jacobi equation:

pYi(x) = max [qf —q7/2 = X2+ V(X (qi + D ¢(x) — 0x) ] = gi=1+V/(x)
' J#i

Symmetry assumption: V; = Vand ¢; = 1 + V' forall i

pV(x) = —3x* + (1 + V'(x))?/2 + V() [(N = 1)(1 + V'(x)) — 6x]
Differentiation

pV'(x) = —x+ V'(x)[(N = 1)V"(x) — 6] + V" (x) [N(1 + V'(x)) — 6x]
Markov strategy ¢ = 1 + V'’ satisfies

(p+0)(o(x) = 1) +x

) = (2N — Do(x) — (N— 1) — ox




Nash equilibria

emissions

Qbau|

1.6

1.2

0.8

0.4

0.0

pollution stock

Tsustui & Mino (1990)
Dockner & Ngo Van Long (1993)

® Many candidates for
equilibrium emission
strategies
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Nash equilibria

emissions

Qbau|

1.6

1.2

0.8

0.4

0.0

pollution stock

Starr & Ho (1969)
van der Ploeg & de Zeeuw (1992)

® Unique continuous Nash
equilibrium g = ¢yn(x)
® Globally defined

® (Piecewise) linear

11/15



Nash equilibria

emissions

Qbau|

pollution stock

Dynamics:
x = No(x) — ox
Steady states on line

Ng —dx=0
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Nash equilibria

emissions

Qbau|

pollution stock

Dockner & Ngo Van Long (1993)

® Multiple locally defined
Nash equilibria

® Most efficient steady state
tends to cooperative steady
state as discount rate p — 0
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Nash equilibria

Qbau|
Rowat (2007)

® Nash equilibrium strategies
have to be defined globally

emissions

pollution stock
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Nash equilibria

emissions

Qbau|

pollution stock

Implications of general theory |
‘Unsustainable limit’ region
® Jumps cannot occur

® Unsustainable limit
behaviour
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Nash equilibria

emissions

Qbau|

pollution stock

Implications of general theory |l
‘No continuation’ region
® Jumps can occur, but

® Solutions cannot be
continued globally
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Nash equilibria

emissions

Qbau|

pollution stock

Implications of general theory IlI

® Through any point of
remaining region there pass
infinitely many Nash
equilibria

® Linear equilibrium has
always lowest payoff
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Efficient Nash equilibrium
Pareto-optimal Nash equilibrium for x(0) = 0.5 TtC
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Efficient Nash equilibrium: Stocks and emissions

pollution stock [TtC]
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Maximally efficient Nash equilibria

100 o= e— e
120
=
& 1001 2 80p
£ 3
z o & 6ol
3 60l - cooperation % ”””””””””””””””” - cooperation
; 2 maximal Nash 5 40f maximal Nash
[ B linear Nash %’ ””” linear Nash
©20p & 20r
or, L L L ok L L L
0.0 0.5 1.0 15 0.0 0.5 1.0 15
initial pollution stock [TtC] initial pollution stock [TtC]

Self-enforcing International Environmental Agreements (= Nash equilibria)

Efficiency: 80%-100% of full cooperation
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Conclusion
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Conclusion

Prisoner’s dilemma: competition vs cooperation
¢ Unique Nash equilibrium

e Selfish competition prevents reaching optimal cooperative outcomes
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Conclusion

Prisoner’s dilemma: competition vs cooperation

¢ Unique Nash equilibrium

e Selfish competition prevents reaching optimal cooperative outcomes
Alternative: coordination

® Many Nash equilibria, some with excellent outcomes

® Good equilibria may require drastic policies

e Communication and negotiations are necessary to coordinate
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