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Non‐cooperative game theory I: Prisoner’s dilemma
Dresher & Flood (1950), Tucker (1950)

II: do not confess II: confess
I: do not confess Both 2 years I: life; II: free
I: confess I: free; II: life Both 20 years

Cooperative outcome unreachable under rational decision making

1 / 15



Non‐cooperative game theory II: Nick Vriend game
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Oxford
Circus

Hyde Park
Corner
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. . .

Trafalgar
Square

1, 1 0, 0 0, 0 0, 0 0, 0

Oxford
Circus

0, 0 1, 1 0, 0 0, 0 0, 0

Hyde Park
Corner

0, 0 0, 0 1, 1 0, 0 0, 0

Covent
Garden

0, 0 0, 0 0, 0 1, 1 0, 0

… 0, 0 0, 0 0, 0 0, 0 1, 1
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Nash equilibria

Nash equilibrium agreements are self‐enforcing

Unique Nash equilibrium

• TINA: Economic considerations determine outcome

Multiple Nash equilibria

• Political freedom, limited, but not determined, by economic considerations

• Negotiations are necessary
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Results

Analysis of transboundary pollution game

Determination of the set of allNash equilibria ¹

Theoretical upper bound efficiency International Environmental Agreements

Literature so far has focused on the least efficient equilibrium

¹ caveats apply
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Programme

• Transboundary pollution game

• Unique continuous equilibrium

• All non‐continuous equilibria

• Efficiency gains
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The transboundary pollution game
van der Ploeg & de Zeeuw (1992)

Emissions qi(t) ofN countries affect stock x(t) of pollutant

ẋ(t) =
N∑
i=1

qi(t)− δx(t), x(0) = x0

Value for country i

Vi(x0) = max
qi

∫ ∞

0

e−ρt

 αqi(t)−
β

2
qi(t)2︸ ︷︷ ︸

benefits industrial production

−γ

2
x(t)2︸ ︷︷ ︸

pollution costs

 dt
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Calibration: assumptions

• Business‐as‐usual emissions: 10 GtC/y.

• Current CO2 pollution: 0.5 TtC

• Carbon budget: 1.0 TtC

• Current Social Cost of Carbon: 400 $/tC

• Discount rate: ρ = 0.025 y−1

• Natural decay: δ = 0.001 y−1
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Calibration: results
Coefficients

α = 678 T$/TtC, β = 339 · 103 T$ y/TtC2, γ = 1.953 T$/y TtC2

Natural units

[value] =
α2

√
βγ

= 565 T$, 2022 Global GDP : 101 T$

[time] =

√
β

γ
= 417 y,

[pollutant] =
α√
βγ

= 0.833 TtC

After rescaling to natural units: α = β = γ = 1, ρ = 6.25, δ = 0.42.
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How is the game played?
Markov assumption
The state variable x(t) contains all relevant information about the system

Autonomous Markov strategies
Emission strategies only condition on the state

qi(t) = ϕi(x(t))

Best reply
Country i chooses best strategy given the actions of all others

ϕi = Bi(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕN) = Bi(ϕ−i)

If this holds for all i, then (ϕ1, . . . , ϕN) is a Nash equilibrium
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Finding Nash equilibrium strategies

Hamilton–Jacobi equation:

ρVi(x) = max
qi

[
qi − q2i /2− x2/2 + V ′

i (x)
(
qi +

∑
j ̸=i

ϕj(x)− δx
)]

⇒ qi = 1 + V ′
i (x)

Symmetry assumption: Vi = V and ϕi = 1 + V ′ for all i

ρV(x) = −1
2x

2 + (1 + V ′(x))2/2 + V ′(x)
[
(N− 1)(1 + V ′(x))− δx

]
Differentiation

ρV ′(x) = −x+ V ′(x)[(N− 1)V ′′(x)− δ] + V ′′(x)
[
N(1 + V ′(x))− δx

]
Markov strategy ϕ = 1 + V ′ satisfies

ϕ′(x) =
(ρ+ δ)(ϕ(x)− 1) + x

(2N− 1)ϕ(x)− (N− 1)− δx
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Nash equilibria
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Tsustui & Mino (1990)
Dockner & Ngo Van Long (1993)

• Many candidates for
equilibrium emission
strategies
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Nash equilibria

0 1 2 3 4 5 6

0.0

0.4

0.8

1.2

1.6

qbau

pollution stock

em
is
si
on

s

Starr & Ho (1969)
van der Ploeg & de Zeeuw (1992)

• Unique continuous Nash
equilibrium q = ϕlin(x)

• Globally defined

• (Piecewise) linear
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Nash equilibria
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Dynamics:

ẋ = Nϕ(x)− δx

Steady states on line

Nq− δx = 0
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Nash equilibria
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Dockner & Ngo Van Long (1993)

• Multiple locally defined
Nash equilibria

• Most efficient steady state
tends to cooperative steady
state as discount rate ρ → 0

11 / 15



Nash equilibria
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Rowat (2007)

• Nash equilibrium strategies
have to be defined globally
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Nash equilibria
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Implications of general theory I

‘Unsustainable limit’ region

• Jumps cannot occur

• Unsustainable limit
behaviour
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Implications of general theory II

‘No continuation’ region

• Jumps can occur, but

• Solutions cannot be
continued globally
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Nash equilibria
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Implications of general theory III

• Through any point of
remaining region there pass
infinitely many Nash
equilibria

• Linear equilibrium has
always lowest payoff
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Efficient Nash equilibrium
Pareto‐optimal Nash equilibrium for x(0) = 0.5 TtC
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Efficient Nash equilibrium: Stocks and emissions
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Maximally efficient Nash equilibria
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Self‐enforcing International Environmental Agreements (=Nash equilibria)

Efficiency: 80%–100%of full cooperation
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Conclusion

Prisoner’s dilemma: competition vs cooperation

• Unique Nash equilibrium

• Selfish competition prevents reaching optimal cooperative outcomes

Alternative: coordination

• Many Nash equilibria, some with excellent outcomes

• Good equilibria may require drastic policies

• Communication and negotiations are necessary to coordinate
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