A game-theoretic approach towards climate change control

Florian Wagener (UvA) with Niko Jaakkola (Bologna)

15 April 2024 Future of Energy Seminar

Non-cooperative game theory I: Prisoner's dilemma Dresher & Flood (1950), Tucker (1950)

	II: do not confess	II: confess
I: do not confess	Both 2 years	I: life; II: free
I: confess	I: free; II: life	Both 20 years

Cooperative outcome unreachable under rational decision making

Non-cooperative game theory II: Nick Vriend game

	Trafalgar Square	Oxford Circus	Hyde Park Corner	Covent Garden	
Trafalgar Square	1, 1	0, 0	0, 0	0, 0	0, 0
Oxford Circus	0, 0	1, 1	0, 0	0, 0	0,0
Hyde Park Corner	0, 0	0, 0	1, 1	0, 0	0,0
Covent Garden	0, 0	0, 0	0, 0	1, 1	0, 0
	0, 0	0,0	0, 0	0,0	1, 1

Nash equilibrium agreements are self-enforcing

Nash equilibrium agreements are self-enforcing

Unique Nash equilibrium

• TINA: Economic considerations determine outcome

Nash equilibrium agreements are self-enforcing

Unique Nash equilibrium

• TINA: Economic considerations determine outcome

Multiple Nash equilibria

- Political freedom, limited, but not determined, by economic considerations
- Negotiations are necessary

Analysis of transboundary pollution game

Determination of the set of all Nash equilibria 1

Theoretical upper bound efficiency International Environmental Agreements

Literature so far has focused on the least efficient equilibrium

Programme

- Transboundary pollution game
- Unique continuous equilibrium
- All non-continuous equilibria
- Efficiency gains

The transboundary pollution game

van der Ploeg & de Zeeuw (1992)

Emissions $q_i(t)$ of N countries affect stock x(t) of pollutant

$$\dot{\mathbf{x}}(t) = \sum_{i=1}^{N} \mathbf{q}_i(t) - \delta \mathbf{x}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$

Value for country i

$$V_{i}(\mathbf{x}_{0}) = \max_{q_{i}} \int_{0}^{\infty} e^{-\rho t} \left(\underbrace{\alpha q_{i}(t) - \frac{\beta}{2} q_{i}(t)^{2}}_{\text{benefits industrial production}} \underbrace{-\frac{\gamma}{2} \mathbf{x}(t)^{2}}_{\text{pollution costs}} \right) dt$$

Calibration: assumptions

- Business-as-usual emissions: 10 GtC/y.
- Current CO₂ pollution: 0.5 TtC
- Carbon budget: 1.0 TtC
- Current Social Cost of Carbon: 400 \$/tC
- Discount rate: $\rho = 0.025 \, \mathrm{y}^{-1}$
- Natural decay: $\delta = 0.001 \text{ y}^{-1}$

Calibration: results

Coefficients

$$\alpha = 678 \text{ T}$$
\$/TtC, $\beta = 339 \cdot 10^3 \text{ T}$ \$ y/TtC², $\gamma = 1.953 \text{ T}$ \$/y TtC²

Calibration: results

Coefficients

$$\alpha = 678 \text{ T$/TtC}, \quad \beta = 339 \cdot 10^3 \text{ T$$ y/TtC}^2, \quad \gamma = 1.953 \text{ T$$/y TtC}^2$$

Natural units

$$\begin{split} & [\mathsf{value}] = \frac{\alpha^2}{\sqrt{\beta\gamma}} = 565 \, \mathsf{T}\$, & \mathsf{2022} \, \mathsf{Global} \, \mathsf{GDP} : 101 \, \mathsf{T}\$ \\ & [\mathsf{time}] = \sqrt{\frac{\beta}{\gamma}} = 417 \, \mathsf{y}, \\ & [\mathsf{pollutant}] = \frac{\alpha}{\sqrt{\beta\gamma}} = 0.833 \, \mathsf{TtC} \end{split}$$

After rescaling to natural units: $\alpha = \beta = \gamma = 1$, $\rho = 6.25$, $\delta = 0.42$.

Markov assumption

The state variable x(t) contains all relevant information about the system

Markov assumption

The state variable x(t) contains all relevant information about the system

Autonomous Markov strategies

Emission strategies only condition on the state

 $q_i(t) = \phi_i(\mathbf{x}(t))$

Markov assumption

The state variable x(t) contains all relevant information about the system

Autonomous Markov strategies

Emission strategies only condition on the state

 $q_i(t) = \phi_i(\mathbf{x}(t))$

Best reply

Country i chooses best strategy given the actions of all others

$$\phi_i = \mathscr{B}_i(\phi_1, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_N) = \mathscr{B}_i(\phi_{-i})$$

Markov assumption

The state variable x(t) contains all relevant information about the system

Autonomous Markov strategies

Emission strategies only condition on the state

 $q_i(t) = \phi_i(\mathbf{x}(t))$

Best reply

Country i chooses best strategy given the actions of all others

$$\phi_i = \mathscr{B}_i(\phi_1, \ldots, \phi_{i-1}, \phi_{i+1}, \ldots, \phi_N) = \mathscr{B}_i(\phi_{-i})$$

If this holds for all *i*, then (ϕ_1, \ldots, ϕ_N) is a Nash equilibrium

Hamilton–Jacobi equation:

$$\rho V_i(x) = \max_{q_i} \left[q_i - q_i^2 / 2 - x^2 / 2 + V_i'(x) \left(q_i + \sum_{j \neq i} \phi_j(x) - \delta x \right) \right] \Rightarrow q_i = 1 + V_i'(x)$$

Hamilton–Jacobi equation:

$$\rho V_i(x) = \max_{q_i} \left[q_i - q_i^2 / 2 - x^2 / 2 + V_i'(x) \left(q_i + \sum_{j \neq i} \phi_j(x) - \delta x \right) \right] \Rightarrow q_i = 1 + V_i'(x)$$

Symmetry assumption: $V_i = V$ and $\phi_i = 1 + V'$ for all i

$$\rho \mathbf{V}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^2 + (1 + \mathbf{V}'(\mathbf{x}))^2 / 2 + \mathbf{V}'(\mathbf{x}) \big[(\mathbf{N} - 1)(1 + \mathbf{V}'(\mathbf{x})) - \delta \mathbf{x} \big]$$

Hamilton–Jacobi equation:

$$\rho V_i(x) = \max_{q_i} \left[q_i - q_i^2 / 2 - x^2 / 2 + V_i'(x) \left(q_i + \sum_{j \neq i} \phi_j(x) - \delta x \right) \right] \Rightarrow q_i = 1 + V_i'(x)$$

Symmetry assumption: $V_i = V$ and $\phi_i = 1 + V'$ for all i

$$\rho \mathbf{V}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^2 + (1 + \mathbf{V}'(\mathbf{x}))^2 / 2 + \mathbf{V}'(\mathbf{x}) \big[(\mathbf{N} - 1)(1 + \mathbf{V}'(\mathbf{x})) - \delta \mathbf{x} \big]$$

Differentiation

$$\rho V'(x) = -x + V'(x)[(N-1)V''(x) - \delta] + V''(x)[N(1+V'(x)) - \delta x]$$

Hamilton–Jacobi equation:

$$\rho V_i(x) = \max_{q_i} \left[q_i - q_i^2 / 2 - x^2 / 2 + V_i'(x) \left(q_i + \sum_{j \neq i} \phi_j(x) - \delta x \right) \right] \Rightarrow q_i = 1 + V_i'(x)$$

Symmetry assumption: $V_i = V$ and $\phi_i = 1 + V'$ for all i

$$\rho \mathbf{V}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^2 + (1 + \mathbf{V}'(\mathbf{x}))^2 / 2 + \mathbf{V}'(\mathbf{x}) \big[(\mathbf{N} - 1)(1 + \mathbf{V}'(\mathbf{x})) - \delta \mathbf{x} \big]$$

Differentiation

$$\rho V'(x) = -x + V'(x)[(N-1)V''(x) - \delta] + V''(x)[N(1+V'(x)) - \delta x]$$

Markov strategy $\phi = 1 + V'$ satisfies

$$\phi'(\mathbf{x}) = \frac{(\rho+\delta)(\phi(\mathbf{x})-1) + \mathbf{x}}{(2N-1)\phi(\mathbf{x}) - (N-1) - \delta\mathbf{x}}$$

Tsustui & Mino (1990) Dockner & Ngo Van Long (1993)

> Many candidates for equilibrium emission strategies

Starr & Ho (1969) van der Ploeg & de Zeeuw (1992)

- Unique continuous Nash equilibrium $q = \phi_{\text{lin}}(x)$
- Globally defined
- (Piecewise) linear

Dockner & Ngo Van Long (1993)

- Multiple locally defined Nash equilibria
- Most efficient steady state tends to cooperative steady state as discount rate $\rho \rightarrow 0$

 Nash equilibrium strategies have to be defined globally

Implications of general theory I

'Unsustainable limit' region

- Jumps cannot occur
- Unsustainable limit behaviour

Implications of general theory II 'No continuation' region

- Jumps can occur, but
- Solutions cannot be continued globally

Implications of general theory III

- Through any point of remaining region there pass infinitely many Nash equilibria
- Linear equilibrium has always lowest payoff

Efficient Nash equilibrium

Pareto-optimal Nash equilibrium for x(0) = 0.5 TtC

Efficient Nash equilibrium: Stocks and emissions

Maximally efficient Nash equilibria

Self-enforcing International Environmental Agreements (= Nash equilibria) Efficiency: 80%-100% of full cooperation

Conclusion

Conclusion

Prisoner's dilemma: competition vs cooperation

- Unique Nash equilibrium
- Selfish competition prevents reaching optimal cooperative outcomes

Conclusion

Prisoner's dilemma: competition vs cooperation

- Unique Nash equilibrium
- Selfish competition prevents reaching optimal cooperative outcomes

Alternative: coordination

- Many Nash equilibria, some with excellent outcomes
- Good equilibria may require drastic policies
- Communication and negotiations are necessary to coordinate